Liu, Bin
Unsupervised Deep Learning for Optical Flow Estimation
Ren, Zhe (Shanghai Jiao Tong University) | Yan, Junchi (East China Normal University) | Ni, Bingbing (Shanghai Jiao Tong University) | Liu, Bin (Moshanghua Tech) | Yang, Xiaokang (Shanghai Jiao Tong Univeristy) | Zha, Hongyuan (Georgia Institute of Technology)
Recent work has shown that optical flow estimation can be formulated as a supervised learning problem. Moreover, convolutional networks have been successfully applied to this task. However, supervised flow learning is obfuscated by the shortage of labeled training data. As a consequence, existing methods have to turn to large synthetic datasets for easily computer generated ground truth. In this work, we explore if a deep network for flow estimation can be trained without supervision. Using image warping by the estimated flow, we devise a simple yet effective unsupervised method for learning optical flow, by directly minimizing photometric consistency. We demonstrate that a flow network can be trained from end-to-end using our unsupervised scheme. In some cases, our results come tantalizingly close to the performance of methods trained with full supervision.
Tensor Decomposition via Variational Auto-Encoder
Liu, Bin, Xu, Zenglin, Li, Yingming
Tensor decomposition is an important technique for capturing the high-order interactions among multiway data. Multi-linear tensor composition methods, such as the Tucker decomposition and the CANDECOMP/PARAFAC (CP), assume that the complex interactions among objects are multi-linear, and are thus insufficient to represent nonlinear relationships in data. Another assumption of these methods is that a predefined rank should be known. However, the rank of tensors is hard to estimate, especially for cases with missing values. To address these issues, we design a Bayesian generative model for tensor decomposition. Different from the traditional Bayesian methods, the high-order interactions of tensor entries are modeled with variational auto-encoder. The proposed model takes advantages of Neural Networks and nonparametric Bayesian models, by replacing the multi-linear product in traditional Bayesian tensor decomposition with a complex nonlinear function (via Neural Networks) whose parameters can be learned from data. Experimental results on synthetic data and real-world chemometrics tensor data have demonstrated that our new model can achieve significantly higher prediction performance than the state-of-the-art tensor decomposition approaches.