Littman, Michael L.
Convergence of a Human-in-the-Loop Policy-Gradient Algorithm With Eligibility Trace Under Reward, Policy, and Advantage Feedback
Shah, Ishaan, Halpern, David, Asadi, Kavosh, Littman, Michael L.
Fluid human-agent communication is essential for the future of human-in-the-loop reinforcement learning. An agent must respond appropriately to feedback from its human trainer even before they have significant experience working together. Therefore, it is important that learning agents respond well to various feedback schemes human trainers are likely to provide. This work analyzes the COnvergent Actor-Critic by Humans (COACH) algorithm under three different types of feedback-policy feedback, reward feedback, and advantage feedback. For these three feedback types, we find that COACH can behave sub-optimally. We propose a variant of COACH, episodic COACH (E-COACH), which we prove converges for all three types. We compare our COACH variant with two other reinforcement-learning algorithms: Q-learning and TAMER.
Brittle AI, Causal Confusion, and Bad Mental Models: Challenges and Successes in the XAI Program
Druce, Jeff, Niehaus, James, Moody, Vanessa, Jensen, David, Littman, Michael L.
The advances in artificial intelligence enabled by deep learning architectures are undeniable. In several cases, deep neural network driven models have surpassed human level performance in benchmark autonomy tasks. The underlying policies for these agents, however, are not easily interpretable. In fact, given their underlying deep models, it is impossible to directly understand the mapping from observations to actions for any reasonably complex agent. Producing this supporting technology to "open the black box" of these AI systems, while not sacrificing performance, was the fundamental goal of the DARPA XAI program. In our journey through this program, we have several "big picture" takeaways: 1) Explanations need to be highly tailored to their scenario; 2) many seemingly high performing RL agents are extremely brittle and are not amendable to explanation; 3) causal models allow for rich explanations, but how to present them isn't always straightforward; and 4) human subjects conjure fantastically wrong mental models for AIs, and these models are often hard to break. This paper discusses the origins of these takeaways, provides amplifying information, and suggestions for future work.
Control of mental representations in human planning
Ho, Mark K., Abel, David, Correa, Carlos G., Littman, Michael L., Cohen, Jonathan D., Griffiths, Thomas L.
One of the most striking features of human cognition is the capacity to plan. Two aspects of human planning stand out: its efficiency, even in complex environments, and its flexibility, even in changing environments. Efficiency is especially impressive because directly computing an optimal plan is intractable, even for modestly complex tasks, and yet people successfully solve myriad everyday problems despite limited cognitive resources. Standard accounts in psychology, economics, and artificial intelligence have suggested this is because people have a mental representation of a task and then use heuristics to plan in that representation. However, this approach generally assumes that mental representations are fixed. Here, we propose that mental representations can be controlled and that this provides opportunities to adaptively simplify problems so they can be more easily reasoned about -- a process we refer to as construal. We construct a formal model of this process and, in a series of large, pre-registered behavioral experiments, show both that construal is subject to online cognitive control and that people form value-guided construals that optimally balance the complexity of a representation and its utility for planning and acting. These results demonstrate how strategically perceiving and conceiving problems facilitates the effective use of limited cognitive resources.
Towards Sample Efficient Agents through Algorithmic Alignment
Li, Mingxuan, Littman, Michael L.
Deep reinforcement-learning agents have demonstrated great success on various tasks. However, current methods typically suffer from sample complexity problems when learning in high dimensional observation spaces, which limits the application of deep reinforcement-learning agents to complex, uncertain real-world tasks. In this work, we propose and explore Deep Graph Value Network as a promising method to work around this drawback using a message-passing mechanism. The main idea is that the RL agent should be guided by structured non-neural-network algorithms like dynamic programming. According to recent advances in algorithmic alignment, neural networks with structured computation procedures can be trained efficiently. We demonstrate the potential of graph neural network in supporting sample efficient learning by showing that Deep Graph Value Network can outperform unstructured baselines by a large margin with low sample complexity.
Stackelberg Punishment and Bully-Proofing Autonomous Vehicles
Cooper, Matt, Lee, Jun Ki, Beck, Jacob, Fishman, Joshua D., Gillett, Michael, Papakipos, Zoë, Zhang, Aaron, Ramos, Jerome, Shah, Aansh, Littman, Michael L.
Mutually beneficial behavior in repeated games can be enforced via the threat of punishment, as enshrined in game theory's well-known "folk theorem." There is a cost, however, to a player for generating these disincentives. In this work, we seek to minimize this cost by computing a "Stackelberg punishment," in which the player selects a behavior that sufficiently punishes the other player while maximizing its own score under the assumption that the other player will adopt a best response. This idea generalizes the concept of a Stackelberg equilibrium. Known efficient algorithms for computing a Stackelberg equilibrium can be adapted to efficiently produce a Stackelberg punishment. We demonstrate an application of this idea in an experiment involving a virtual autonomous vehicle and human participants. We find that a self-driving car with a Stackelberg punishment policy discourages human drivers from bullying in a driving scenario requiring social negotiation.
Interactive Learning of Environment Dynamics for Sequential Tasks
Loftin, Robert, Peng, Bei, Taylor, Matthew E., Littman, Michael L., Roberts, David L.
In order for robots and other artificial agents to efficiently learn to perform useful tasks defined by an end user, they must understand not only the goals of those tasks, but also the structure and dynamics of that user's environment. While existing work has looked at how the goals of a task can be inferred from a human teacher, the agent is often left to learn about the environment on its own. To address this limitation, we develop an algorithm, Behavior Aware Modeling (BAM), which incorporates a teacher's knowledge into a model of the transition dynamics of an agent's environment. We evaluate BAM both in simulation and with real human teachers, learning from a combination of task demonstrations and evaluative feedback, and show that it can outperform approaches which do not explicitly consider this source of dynamics knowledge.
Deep Reinforcement Learning from Policy-Dependent Human Feedback
Arumugam, Dilip, Lee, Jun Ki, Saskin, Sophie, Littman, Michael L.
To widen their accessibility and increase their utility, intelligent agents must be able to learn complex behaviors as specified by (non-expert) human users. Moreover, they will need to learn these behaviors within a reasonable amount of time while efficiently leveraging the sparse feedback a human trainer is capable of providing. Recent work has shown that human feedback can be characterized as a critique of an agent's current behavior rather than as an alternative reward signal to be maximized, culminating in the COnvergent Actor-Critic by Humans (COACH) algorithm for making direct policy updates based on human feedback. Our work builds on COACH, moving to a setting where the agent's policy is represented by a deep neural network. We employ a series of modifications on top of the original COACH algorithm that are critical for successfully learning behaviors from high-dimensional observations, while also satisfying the constraint of obtaining reduced sample complexity. We demonstrate the effectiveness of our Deep COACH algorithm in the rich 3D world of Minecraft with an agent that learns to complete tasks by mapping from raw pixels to actions using only real-time human feedback in 10-15 minutes of interaction.
Successor Features Support Model-based and Model-free Reinforcement Learning
Lehnert, Lucas, Littman, Michael L.
One key challenge in reinforcement learning is the ability to generalize knowledge in control problems. While deep learning methods have been successfully combined with model-free reinforcement-learning algorithms, how to perform model-based reinforcement learning in the presence of approximation errors still remains an open problem. Using successor features, a feature representation that predicts a temporal constraint, this paper presents three contributions: First, it shows how learning successor features is equivalent to model-free learning. Then, it shows how successor features encode model reductions that compress the state space by creating state partitions of bisimilar states. Using this representation, an intelligent agent is guaranteed to accurately predict future reward outcomes, a key property of model-based reinforcement-learning algorithms. Lastly, it presents a loss objective and prediction error bounds showing that accurately predicting value functions and reward sequences is possible with an approximation of successor features. On finite control problems, we illustrate how minimizing this loss objective results in approximate bisimulations. The results presented in this paper provide a novel understanding of representations that can support model-free and model-based reinforcement learning.
Theory of Minds: Understanding Behavior in Groups Through Inverse Planning
Shum, Michael, Kleiman-Weiner, Max, Littman, Michael L., Tenenbaum, Joshua B.
Human social behavior is structured by relationships. We form teams, groups, tribes, and alliances at all scales of human life. These structures guide multi-agent cooperation and competition, but when we observe others these underlying relationships are typically unobservable and hence must be inferred. Humans make these inferences intuitively and flexibly, often making rapid generalizations about the latent relationships that underlie behavior from just sparse and noisy observations. Rapid and accurate inferences are important for determining who to cooperate with, who to compete with, and how to cooperate in order to compete. Towards the goal of building machine-learning algorithms with human-like social intelligence, we develop a generative model of multi-agent action understanding based on a novel representation for these latent relationships called Composable Team Hierarchies (CTH). This representation is grounded in the formalism of stochastic games and multi-agent reinforcement learning. We use CTH as a target for Bayesian inference yielding a new algorithm for understanding behavior in groups that can both infer hidden relationships as well as predict future actions for multiple agents interacting together. Our algorithm rapidly recovers an underlying causal model of how agents relate in spatial stochastic games from just a few observations. The patterns of inference made by this algorithm closely correspond with human judgments and the algorithm makes the same rapid generalizations that people do.
Mitigating Planner Overfitting in Model-Based Reinforcement Learning
Arumugam, Dilip, Abel, David, Asadi, Kavosh, Gopalan, Nakul, Grimm, Christopher, Lee, Jun Ki, Lehnert, Lucas, Littman, Michael L.
An agent with an inaccurate model of its environment faces a difficult choice: it can ignore the errors in its model and act in the real world in whatever way it determines is optimal with respect to its model. Alternatively, it can take a more conservative stance and eschew its model in favor of optimizing its behavior solely via real-world interaction. This latter approach can be exceedingly slow to learn from experience, while the former can lead to "planner overfitting" - aspects of the agent's behavior are optimized to exploit errors in its model. This paper explores an intermediate position in which the planner seeks to avoid overfitting through a kind of regularization of the plans it considers. We present three different approaches that demonstrably mitigate planner overfitting in reinforcement-learning environments.