Not enough data to create a plot.
Try a different view from the menu above.
Lisberger, Stephen G.
Biologically Plausible Local Learning Rules for the Adaptation of the Vestibulo-Ocular Reflex
Coenen, Olivier, Sejnowski, Terrence J., Lisberger, Stephen G.
Lisberger Department of Physiology W.M. Keck Foundation Center for Integrative Neuroscience University of California, San Fransisco, CA, 94143 Abstract The vestibulo-ocular reflex (VOR) is a compensatory eye movement that stabilizes images on the retina during head turns. Its magnitude, or gain, can be modified by visual experience during head movements. Possible learning mechanisms for this adaptation have been explored in a model of the oculomotor system based on anatomical and physiological constraints. Thelocal correlational learning rules in our model reproduce the adaptation and behavior of the VOR under certain parameter conditions. From these conditions, predictions for the time course of adaptation at the learning sites are made. 1 INTRODUCTION The primate oculomotor system is capable of maintaining the image of an object on the fovea even when the head and object are moving simultaneously.
Biologically Plausible Local Learning Rules for the Adaptation of the Vestibulo-Ocular Reflex
Coenen, Olivier, Sejnowski, Terrence J., Lisberger, Stephen G.
The vestibulo-ocular reflex (VOR) is a compensatory eye movement that stabilizes images on the retina during head turns. Its magnitude, or gain, can be modified by visual experience during head movements. Possible learning mechanisms for this adaptation have been explored in a model of the oculomotor system based on anatomical and physiological constraints. The local correlational learning rules in our model reproduce the adaptation and behavior of the VOR under certain parameter conditions. From these conditions, predictions for the time course of adaptation at the learning sites are made. 1 INTRODUCTION The primate oculomotor system is capable of maintaining the image of an object on the fovea even when the head and object are moving simultaneously.