Lippert, Christoph
Interpretable and Interactive Deep Multiple Instance Learning for Dental Caries Classification in Bitewing X-rays
Bergner, Benjamin, Rohrer, Csaba, Taleb, Aiham, Duchrau, Martha, De Leon, Guilherme, Rodrigues, Jonas Almeida, Schwendicke, Falk, Krois, Joachim, Lippert, Christoph
We propose a simple and efficient image classification architecture based on deep multiple instance learning, and apply it to the challenging task of caries detection in dental radiographs. Technically, our approach contributes in two ways: First, it outputs a heatmap of local patch classification probabilities despite being trained with weak image-level labels. Second, it is amenable to learning from segmentation labels to guide training. In contrast to existing methods, the human user can faithfully interpret predictions and interact with the model to decide which regions to attend to. Experiments are conducted on a large clinical dataset of $\sim$38k bitewings ($\sim$316k teeth), where we achieve competitive performance compared to various baselines. When guided by an external caries segmentation model, a significant improvement in classification and localization performance is observed.
ContIG: Self-supervised Multimodal Contrastive Learning for Medical Imaging with Genetics
Taleb, Aiham, Kirchler, Matthias, Monti, Remo, Lippert, Christoph
High annotation costs are a substantial bottleneck in applying modern deep learning architectures to clinically relevant medical use cases, substantiating the need for novel algorithms to learn from unlabeled data. In this work, we propose ContIG, a self-supervised method that can learn from large datasets of unlabeled medical images and genetic data. Our approach aligns images and several genetic modalities in the feature space using a contrastive loss. We design our method to integrate multiple modalities of each individual person in the same model end-to-end, even when the available modalities vary across individuals. Our procedure outperforms state-of-the-art self-supervised methods on all evaluated downstream benchmark tasks. We also adapt gradient-based explainability algorithms to better understand the learned cross-modal associations between the images and genetic modalities. Finally, we perform genome-wide association studies on the features learned by our models, uncovering interesting relationships between images and genetic data.
Explainability Requires Interactivity
Kirchler, Matthias, Graf, Martin, Kloft, Marius, Lippert, Christoph
When explaining the decisions of deep neural networks, simple stories are tempting but dangerous. Especially in computer vision, the most popular explanation approaches give a false sense of comprehension to its users and provide an overly simplistic picture. We introduce an interactive framework to understand the highly complex decision boundaries of modern vision models. It allows the user to exhaustively inspect, probe, and test a network's decisions. Across a range of case studies, we compare the power of our interactive approach to static explanation methods, showing how these can lead a user astray, with potentially severe consequences.
Beyond the Mean-Field: Structured Deep Gaussian Processes Improve the Predictive Uncertainties
Lindinger, Jakob, Reeb, David, Lippert, Christoph, Rakitsch, Barbara
Deep Gaussian Processes learn probabilistic data representations for supervised learning by cascading multiple Gaussian Processes. While this model family promises flexible predictive distributions, exact inference is not tractable. Approximate inference techniques trade off the ability to closely resemble the posterior distribution against speed of convergence and computational efficiency. We propose a novel Gaussian variational family that allows for retaining covariances between latent processes while achieving fast convergence by marginalising out all global latent variables. After providing a proof of how this marginalisation can be done for general covariances, we restrict them to the ones we empirically found to be most important in order to also achieve computational efficiency. We provide an efficient implementation of our new approach and apply it to several benchmark datasets. It yields excellent results and strikes a better balance between accuracy and calibrated uncertainty estimates than its state-of-the-art alternatives.
Integrating omics and MRI data with kernel-based tests and CNNs to identify rare genetic markers for Alzheimer's disease
Konigorski, Stefan, Khorasani, Shahryar, Lippert, Christoph
For precision medicine and personalized treatment, we need to identify predictive markers of disease. We focus on Alzheimer's disease (AD), where magnetic resonance imaging scans provide information about the disease status. By combining imaging with genome sequencing, we aim at identifying rare genetic markers associated with quantitative traits predicted from convolutional neural networks (CNNs), which traditionally have been derived manually by experts. Kernel-based tests are a powerful tool for associating sets of genetic variants, but how to optimally model rare genetic variants is still an open research question. We propose a generalized set of kernels that incorporate prior information from various annotations and multi-omics data. In the analysis of data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), we evaluate whether (i) CNNs yield precise and reliable brain traits, and (ii) the novel kernel-based tests can help to identify loci associated with AD. The results indicate that CNNs provide a fast, scalable and precise tool to derive quantitative AD traits and that new kernels integrating domain knowledge can yield higher power in association tests of very rare variants.
Sparse Probit Linear Mixed Model
Mandt, Stephan, Wenzel, Florian, Nakajima, Shinichi, Cunningham, John P., Lippert, Christoph, Kloft, Marius
Linear Mixed Models (LMMs) are important tools in statistical genetics. When used for feature selection, they allow to find a sparse set of genetic traits that best predict a continuous phenotype of interest, while simultaneously correcting for various confounding factors such as age, ethnicity and population structure. Formulated as models for linear regression, LMMs have been restricted to continuous phenotypes. We introduce the Sparse Probit Linear Mixed Model (Probit-LMM), where we generalize the LMM modeling paradigm to binary phenotypes. As a technical challenge, the model no longer possesses a closed-form likelihood function. In this paper, we present a scalable approximate inference algorithm that lets us fit the model to high-dimensional data sets. We show on three real-world examples from different domains that in the setup of binary labels, our algorithm leads to better prediction accuracies and also selects features which show less correlation with the confounding factors.
It is all in the noise: Efficient multi-task Gaussian process inference with structured residuals
Rakitsch, Barbara, Lippert, Christoph, Borgwardt, Karsten, Stegle, Oliver
Multi-task prediction models are widely being used to couple regressors or classification models by sharing information across related tasks. A common pitfall of these models is that they assume that the output tasks are independent conditioned on the inputs. Here, we propose a multi-task Gaussian process approach to model both the relatedness between regressors as well as the task correlations in the residuals, in order to more accurately identify true sharing between regressors. The resulting Gaussian model has a covariance term that is the sum of Kronecker products, for which efficient parameter inference and out of sample prediction are feasible. On both synthetic examples and applications to phenotype prediction in genetics, we find substantial benefits of modeling structured noise compared to established alternatives.
A powerful and efficient set test for genetic markers that handles confounders
Listgarten, Jennifer, Lippert, Christoph, Kang, Eun Yong, Xiang, Jing, Kadie, Carl M., Heckerman, David
Approaches for testing sets of variants, such as a set of rare or common variants within a gene or pathway, for association with complex traits are important. In particular, set tests allow for aggregation of weak signal within a set, can capture interplay among variants, and reduce the burden of multiple hypothesis testing. Until now, these approaches did not address confounding by family relatedness and population structure, a problem that is becoming more important as larger data sets are used to increase power. Results: We introduce a new approach for set tests that handles confounders. Our model is based on the linear mixed model and uses two random effects-one to capture the set association signal and one to capture confounders. We also introduce a computational speedup for two-random-effects models that makes this approach feasible even for extremely large cohorts. Using this model with both the likelihood ratio test and score test, we find that the former yields more power while controlling type I error. Application of our approach to richly structured GAW14 data demonstrates that our method successfully corrects for population structure and family relatedness, while application of our method to a 15,000 individual Crohn's disease case-control cohort demonstrates that it additionally recovers genes not recoverable by univariate analysis. Availability: A Python-based library implementing our approach is available at http://mscompbio.codeplex.com