Not enough data to create a plot.
Try a different view from the menu above.
Lin, Zhenghao
Sigma: Differential Rescaling of Query, Key and Value for Efficient Language Models
Lin, Zhenghao, Tang, Zihao, Liu, Xiao, Gong, Yeyun, Cheng, Yi, Chen, Qi, Li, Hang, Xin, Ying, Yang, Ziyue, Yang, Kailai, Yan, Yu, Liang, Xiao, Lu, Shuai, Huang, Yiming, Luo, Zheheng, Qu, Lei, Feng, Xuan, Wang, Yaoxiang, Xia, Yuqing, Chen, Feiyang, Jiang, Yuting, Hu, Yasen, Ni, Hao, Li, Binyang, Zhao, Guoshuai, Chiang, Jui-Hao, Guo, Zhongxin, Lin, Chen, Kuang, Kun, Li, Wenjie, Shen, Yelong, Jiao, Jian, Cheng, Peng, Yang, Mao
We introduce Sigma, an efficient large language model specialized for the system domain, empowered by a novel architecture including DiffQKV attention, and pre-trained on our meticulously collected system domain data. DiffQKV attention significantly enhances the inference efficiency of Sigma by optimizing the Query (Q), Key (K), and Value (V) components in the attention mechanism differentially, based on their varying impacts on the model performance and efficiency indicators. Specifically, we (1) conduct extensive experiments that demonstrate the model's varying sensitivity to the compression of K and V components, leading to the development of differentially compressed KV, and (2) propose augmented Q to expand the Q head dimension, which enhances the model's representation capacity with minimal impacts on the inference speed. Rigorous theoretical and empirical analyses reveal that DiffQKV attention significantly enhances efficiency, achieving up to a 33.36% improvement in inference speed over the conventional grouped-query attention (GQA) in long-context scenarios. We pre-train Sigma on 6T tokens from various sources, including 19.5B system domain data that we carefully collect and 1T tokens of synthesized and rewritten data. In general domains, Sigma achieves comparable performance to other state-of-arts models. In the system domain, we introduce the first comprehensive benchmark AIMicius, where Sigma demonstrates remarkable performance across all tasks, significantly outperforming GPT-4 with an absolute improvement up to 52.5%.
A Deep Learning Framework Integrating CNN and BiLSTM for Financial Systemic Risk Analysis and Prediction
Cheng, Yu, Xu, Zhen, Chen, Yuan, Wang, Yuhan, Lin, Zhenghao, Liu, Jinsong
This study proposes a deep learning model based on the combination of convolutional neural network (CNN) and bidirectional long short-term memory network (BiLSTM) for discriminant analysis of financial systemic risk. The model first uses CNN to extract local patterns of multidimensional features of financial markets, and then models the bidirectional dependency of time series through BiLSTM, to comprehensively characterize the changing laws of systemic risk in spatial features and temporal dynamics. The experiment is based on real financial data sets. The results show that the model is significantly superior to traditional single models (such as BiLSTM, CNN, Transformer, and TCN) in terms of accuracy, recall, and F1 score. The F1-score reaches 0.88, showing extremely high discriminant ability. This shows that the joint strategy of combining CNN and BiLSTM can not only fully capture the complex patterns of market data but also effectively deal with the long-term dependency problem in time series data. In addition, this study also explores the robustness of the model in dealing with data noise and processing high-dimensional data, providing strong support for intelligent financial risk management. In the future, the research will further optimize the model structure, introduce methods such as reinforcement learning and multimodal data analysis, and improve the efficiency and generalization ability of the model to cope with a more complex financial environment.
Collaborative Optimization in Financial Data Mining Through Deep Learning and ResNeXt
Feng, Pengbin, Li, Yankaiqi, Qi, Yijiashun, Guo, Xiaojun, Lin, Zhenghao
This study proposes a multi-task learning framework based on ResNeXt, aiming to solve the problem of feature extraction and task collaborative optimization in financial data mining. Financial data usually has the complex characteristics of high dimensionality, nonlinearity, and time series, and is accompanied by potential correlations between multiple tasks, making it difficult for traditional methods to meet the needs of data mining. This study introduces the ResNeXt model into the multi-task learning framework and makes full use of its group convolution mechanism to achieve efficient extraction of local patterns and global features of financial data. At the same time, through the design of task sharing layers and dedicated layers, it is established between multiple related tasks. Deep collaborative optimization relationships. Through flexible multi-task loss weight design, the model can effectively balance the learning needs of different tasks and improve overall performance. Experiments are conducted on a real S&P 500 financial data set, verifying the significant advantages of the proposed framework in classification and regression tasks. The results indicate that, when compared to other conventional deep learning models, the proposed method delivers superior performance in terms of accuracy, F1 score, root mean square error, and other metrics, highlighting its outstanding effectiveness and robustness in handling complex financial data. This research provides an efficient and adaptable solution for financial data mining, and at the same time opens up a new research direction for the combination of multi-task learning and deep learning, which has important theoretical significance and practical application value.
Integrative Analysis of Financial Market Sentiment Using CNN and GRU for Risk Prediction and Alert Systems
Wu, You, Sun, Mengfang, Zheng, Hongye, Hu, Jinxin, Liang, Yingbin, Lin, Zhenghao
This document presents an in-depth examination of stock market sentiment through the integration of Convolutional Neural Networks (CNN) and Gated Recurrent Units (GRU), enabling precise risk alerts. The robust feature extraction capability of CNN is utilized to preprocess and analyze extensive network text data, identifying local features and patterns. The extracted feature sequences are then input into the GRU model to understand the progression of emotional states over time and their potential impact on future market sentiment and risk. This approach addresses the order dependence and long-term dependencies inherent in time series data, resulting in a detailed analysis of stock market sentiment and effective early warnings of future risks.
Rho-1: Not All Tokens Are What You Need
Lin, Zhenghao, Gou, Zhibin, Gong, Yeyun, Liu, Xiao, Shen, Yelong, Xu, Ruochen, Lin, Chen, Yang, Yujiu, Jiao, Jian, Duan, Nan, Chen, Weizhu
Previous language model pre-training methods have uniformly applied a next-token prediction loss to all training tokens. Challenging this norm, we posit that ''Not all tokens in a corpus are equally important for language model training''. Our initial analysis examines token-level training dynamics of language model, revealing distinct loss patterns for different tokens. Leveraging these insights, we introduce a new language model called Rho-1. Unlike traditional LMs that learn to predict every next token in a corpus, Rho-1 employs Selective Language Modeling (SLM), which selectively trains on useful tokens that aligned with the desired distribution. This approach involves scoring pretraining tokens using a reference model, and then training the language model with a focused loss on tokens with higher scores. When continual pretraining on 15B OpenWebMath corpus, Rho-1 yields an absolute improvement in few-shot accuracy of up to 30% in 9 math tasks. After fine-tuning, Rho-1-1B and 7B achieved state-of-the-art results of 40.6% and 51.8% on MATH dataset, respectively - matching DeepSeekMath with only 3% of the pretraining tokens. Furthermore, when pretraining on 80B general tokens, Rho-1 achieves 6.8% average enhancement across 15 diverse tasks, increasing both efficiency and performance of the language model pre-training.
Ensuring Safe and High-Quality Outputs: A Guideline Library Approach for Language Models
Luo, Yi, Lin, Zhenghao, Zhang, Yuhao, Sun, Jiashuo, Lin, Chen, Xu, Chengjin, Su, Xiangdong, Shen, Yelong, Guo, Jian, Gong, Yeyun
Large Language Models (LLMs) exhibit impressive capabilities but also present risks such as biased content generation and privacy issues. One of the current alignment techniques includes principle-driven integration, but it faces challenges arising from the imprecision of manually crafted rules and inadequate risk perception in models without safety training. To address these, we introduce Guide-Align, a two-stage approach. Initially, a safety-trained model identifies potential risks and formulates specific guidelines for various inputs, establishing a comprehensive library of guidelines and a model for input-guidelines retrieval. Subsequently, the retrieval model correlates new inputs with relevant guidelines, which guide LLMs in response generation to ensure safe and high-quality outputs, thereby aligning with human values. An additional optional stage involves fine-tuning a model with well-aligned datasets generated through the process implemented in the second stage. Our method customizes guidelines to accommodate diverse inputs, thereby enhancing the fine-grainedness and comprehensiveness of the guideline library. Furthermore, it incorporates safety expertise from a safety-trained LLM through a lightweight retrieval model. We evaluate our approach on three benchmarks, demonstrating significant improvements in LLM security and quality. Notably, our fine-tuned model, Labrador, even at 13 billion parameters, outperforms GPT-3.5-turbo and surpasses GPT-4 in alignment capabilities.
On the Evaluation of Generative Models in Distributed Learning Tasks
Wang, Zixiao, Farnia, Farzan, Lin, Zhenghao, Shen, Yunheng, Yu, Bei
The evaluation of deep generative models including generative adversarial networks (GANs) and diffusion models has been extensively studied in the literature. While the existing evaluation methods mainly target a centralized learning problem with training data stored by a single client, many applications of generative models concern distributed learning settings, e.g. the federated learning scenario, where training data are collected by and distributed among several clients. In this paper, we study the evaluation of generative models in distributed learning tasks with heterogeneous data distributions. First, we focus on the Fr\'echet inception distance (FID) and consider the following FID-based aggregate scores over the clients: 1) FID-avg as the mean of clients' individual FID scores, 2) FID-all as the FID distance of the trained model to the collective dataset containing all clients' data. We prove that the model rankings according to the FID-all and FID-avg scores could be inconsistent, which can lead to different optimal generative models according to the two aggregate scores. Next, we consider the kernel inception distance (KID) and similarly define the KID-avg and KID-all aggregations. Unlike the FID case, we prove that KID-all and KID-avg result in the same rankings of generative models. We perform several numerical experiments on standard image datasets and training schemes to support our theoretical findings on the evaluation of generative models in distributed learning problems.
Competition-Level Problems are Effective LLM Evaluators
Huang, Yiming, Lin, Zhenghao, Liu, Xiao, Gong, Yeyun, Lu, Shuai, Lei, Fangyu, Liang, Yaobo, Shen, Yelong, Lin, Chen, Duan, Nan, Chen, Weizhu
Large language models (LLMs) have demonstrated impressive reasoning capabilities, yet there is ongoing debate about these abilities and the potential data contamination problem recently. This paper aims to evaluate the reasoning capacities of LLMs, specifically in solving recent competition-level programming problems in Codeforces, which are expert-crafted and unique, requiring deep understanding and robust reasoning skills. We first provide a comprehensive evaluation of GPT-4's peiceived zero-shot performance on this task, considering various aspects such as problems' release time, difficulties, and types of errors encountered. Surprisingly, the peiceived performance of GPT-4 has experienced a cliff like decline in problems after September 2021 consistently across all the difficulties and types of problems, which shows the potential data contamination, as well as the challenges for any existing LLM to solve unseen complex reasoning problems. We further explore various approaches such as fine-tuning, Chain-of-Thought prompting and problem description simplification, unfortunately none of them is able to consistently mitigate the challenges. Through our work, we emphasis the importance of this excellent data source for assessing the genuine reasoning capabilities of LLMs, and foster the development of LLMs with stronger reasoning abilities and better generalization in the future.
PROD: Progressive Distillation for Dense Retrieval
Lin, Zhenghao, Gong, Yeyun, Liu, Xiao, Zhang, Hang, Lin, Chen, Dong, Anlei, Jiao, Jian, Lu, Jingwen, Jiang, Daxin, Majumder, Rangan, Duan, Nan
Knowledge distillation is an effective way to transfer knowledge from a strong teacher to an efficient student model. Ideally, we expect the better the teacher is, the better the student. However, this expectation does not always come true. It is common that a better teacher model results in a bad student via distillation due to the nonnegligible gap between teacher and student. To bridge the gap, we propose PROD, a PROgressive Distillation method, for dense retrieval. PROD consists of a teacher progressive distillation and a data progressive distillation to gradually improve the student. We conduct extensive experiments on five widely-used benchmarks, MS MARCO Passage, TREC Passage 19, TREC Document 19, MS MARCO Document and Natural Questions, where PROD achieves the state-of-the-art within the distillation methods for dense retrieval. The code and models will be released.
AnnoLLM: Making Large Language Models to Be Better Crowdsourced Annotators
He, Xingwei, Lin, Zhenghao, Gong, Yeyun, Jin, A-Long, Zhang, Hang, Lin, Chen, Jiao, Jian, Yiu, Siu Ming, Duan, Nan, Chen, Weizhu
Many natural language processing (NLP) tasks rely on labeled data to train machine learning models to achieve high performance. However, data annotation can be a time-consuming and expensive process, especially when the task involves a large amount of data or requires specialized domains. Recently, GPT-3.5 series models have demonstrated remarkable few-shot and zero-shot ability across various NLP tasks. In this paper, we first claim that large language models (LLMs), such as GPT-3.5, can serve as an excellent crowdsourced annotator by providing them with sufficient guidance and demonstrated examples. To make LLMs to be better annotators, we propose a two-step approach, 'explain-then-annotate'. To be more precise, we begin by creating prompts for every demonstrated example, which we subsequently utilize to prompt a LLM to provide an explanation for why the specific ground truth answer/label was chosen for that particular example. Following this, we construct the few-shot chain-of-thought prompt with the self-generated explanation and employ it to annotate the unlabeled data. We conduct experiments on three tasks, including user input and keyword relevance assessment, BoolQ and WiC. The annotation results from GPT-3.5 surpasses those from crowdsourced annotation for user input and keyword relevance assessment. Additionally, for the other two tasks, GPT-3.5 achieves results that are comparable to those obtained through crowdsourced annotation.