Not enough data to create a plot.
Try a different view from the menu above.
Lin, Qingwei
COIN: Chance-Constrained Imitation Learning for Uncertainty-aware Adaptive Resource Oversubscription Policy
Wang, Lu, Das, Mayukh, Yang, Fangkai, Duo, Chao, Qiao, Bo, Dong, Hang, Qin, Si, Bansal, Chetan, Lin, Qingwei, Rajmohan, Saravan, Zhang, Dongmei, Zhang, Qi
We address the challenge of learning safe and robust decision policies in presence of uncertainty in context of the real scientific problem of adaptive resource oversubscription to enhance resource efficiency while ensuring safety against resource congestion risk. Traditional supervised prediction or forecasting models are ineffective in learning adaptive policies whereas standard online optimization or reinforcement learning is difficult to deploy on real systems. Offline methods such as imitation learning (IL) are ideal since we can directly leverage historical resource usage telemetry. But, the underlying aleatoric uncertainty in such telemetry is a critical bottleneck. We solve this with our proposed novel chance-constrained imitation learning framework, which ensures implicit safety against uncertainty in a principled manner via a combination of stochastic (chance) constraints on resource congestion risk and ensemble value functions. This leads to substantial ($\approx 3-4\times$) improvement in resource efficiency and safety in many oversubscription scenarios, including resource management in cloud services.
Contrastive Learning with Negative Sampling Correction
Wang, Lu, Du, Chao, Zhao, Pu, Luo, Chuan, Zhu, Zhangchi, Qiao, Bo, Zhang, Wei, Lin, Qingwei, Rajmohan, Saravan, Zhang, Dongmei, Zhang, Qi
As one of the most effective self-supervised representation learning methods, contrastive learning (CL) relies on multiple negative pairs to contrast against each positive pair. In the standard practice of contrastive learning, data augmentation methods are utilized to generate both positive and negative pairs. While existing works have been focusing on improving the positive sampling, the negative sampling process is often overlooked. In fact, the generated negative samples are often polluted by positive samples, which leads to a biased loss and performance degradation. To correct the negative sampling bias, we propose a novel contrastive learning method named Positive-Unlabeled Contrastive Learning (PUCL). PUCL treats the generated negative samples as unlabeled samples and uses information from positive samples to correct bias in contrastive loss. We prove that the corrected loss used in PUCL only incurs a negligible bias compared to the unbiased contrastive loss. PUCL can be applied to general contrastive learning problems and outperforms state-of-the-art methods on various image and graph classification tasks. The code of PUCL is in the supplementary file.
Why does Prediction Accuracy Decrease over Time? Uncertain Positive Learning for Cloud Failure Prediction
Li, Haozhe, Ma, Minghua, Liu, Yudong, Zhao, Pu, Zheng, Lingling, Li, Ze, Dang, Yingnong, Chintalapati, Murali, Rajmohan, Saravan, Lin, Qingwei, Zhang, Dongmei
With the rapid growth of cloud computing, a variety of software services have been deployed in the cloud. To ensure the reliability of cloud services, prior studies focus on failure instance (disk, node, and switch, etc.) prediction. Once the output of prediction is positive, mitigation actions are taken to rapidly resolve the underlying failure. According to our real-world practice in Microsoft Azure, we find that the prediction accuracy may decrease by about 9% after retraining the models. Considering that the mitigation actions may result in uncertain positive instances since they cannot be verified after mitigation, which may introduce more noise while updating the prediction model. To the best of our knowledge, we are the first to identify this Uncertain Positive Learning (UPLearning) issue in the real-world cloud failure prediction scenario. To tackle this problem, we design an Uncertain Positive Learning Risk Estimator (Uptake) approach. Using two real-world datasets of disk failure prediction and conducting node prediction experiments in Microsoft Azure, which is a top-tier cloud provider that serves millions of users, we demonstrate Uptake can significantly improve the failure prediction accuracy by 5% on average.
Xpert: Empowering Incident Management with Query Recommendations via Large Language Models
Jiang, Yuxuan, Zhang, Chaoyun, He, Shilin, Yang, Zhihao, Ma, Minghua, Qin, Si, Kang, Yu, Dang, Yingnong, Rajmohan, Saravan, Lin, Qingwei, Zhang, Dongmei
Large-scale cloud systems play a pivotal role in modern IT infrastructure. However, incidents occurring within these systems can lead to service disruptions and adversely affect user experience. To swiftly resolve such incidents, on-call engineers depend on crafting domain-specific language (DSL) queries to analyze telemetry data. However, writing these queries can be challenging and time-consuming. This paper presents a thorough empirical study on the utilization of queries of KQL, a DSL employed for incident management in a large-scale cloud management system at Microsoft. The findings obtained underscore the importance and viability of KQL queries recommendation to enhance incident management. Building upon these valuable insights, we introduce Xpert, an end-to-end machine learning framework that automates KQL recommendation process. By leveraging historical incident data and large language models, Xpert generates customized KQL queries tailored to new incidents. Furthermore, Xpert incorporates a novel performance metric called Xcore, enabling a thorough evaluation of query quality from three comprehensive perspectives. We conduct extensive evaluations of Xpert, demonstrating its effectiveness in offline settings. Notably, we deploy Xpert in the real production environment of a large-scale incident management system in Microsoft, validating its efficiency in supporting incident management. To the best of our knowledge, this paper represents the first empirical study of its kind, and Xpert stands as a pioneering DSL query recommendation framework designed for incident management.
Counter-Empirical Attacking based on Adversarial Reinforcement Learning for Time-Relevant Scoring System
Sun, Xiangguo, Cheng, Hong, Dong, Hang, Qiao, Bo, Qin, Si, Lin, Qingwei
Scoring systems are commonly seen for platforms in the era of big data. From credit scoring systems in financial services to membership scores in E-commerce shopping platforms, platform managers use such systems to guide users towards the encouraged activity pattern, and manage resources more effectively and more efficiently thereby. To establish such scoring systems, several "empirical criteria" are firstly determined, followed by dedicated top-down design for each factor of the score, which usually requires enormous effort to adjust and tune the scoring function in the new application scenario. What's worse, many fresh projects usually have no ground-truth or any experience to evaluate a reasonable scoring system, making the designing even harder. To reduce the effort of manual adjustment of the scoring function in every new scoring system, we innovatively study the scoring system from the preset empirical criteria without any ground truth, and propose a novel framework to improve the system from scratch. In this paper, we propose a "counter-empirical attacking" mechanism that can generate "attacking" behavior traces and try to break the empirical rules of the scoring system. Then an adversarial "enhancer" is applied to evaluate the scoring system and find the improvement strategy. By training the adversarial learning problem, a proper scoring function can be learned to be robust to the attacking activity traces that are trying to violate the empirical criteria. Extensive experiments have been conducted on two scoring systems including a shared computing resource platform and a financial credit system. The experimental results have validated the effectiveness of our proposed framework.
Conservative State Value Estimation for Offline Reinforcement Learning
Chen, Liting, Yan, Jie, Shao, Zhengdao, Wang, Lu, Lin, Qingwei, Rajmohan, Saravan, Moscibroda, Thomas, Zhang, Dongmei
Offline reinforcement learning faces a significant challenge of value over-estimation due to the distributional drift between the dataset and the current learned policy, leading to learning failure in practice. The common approach is to incorporate a penalty term to reward or value estimation in the Bellman iterations. Meanwhile, to avoid extrapolation on out-of-distribution (OOD) states and actions, existing methods focus on conservative Q-function estimation. In this paper, we propose Conservative State Value Estimation (CSVE), a new approach that learns conservative V-function via directly imposing penalty on OOD states. Compared to prior work, CSVE allows more effective state value estimation with conservative guarantees and further better policy optimization. Further, we apply CSVE and develop a practical actor-critic algorithm in which the critic does the conservative value estimation by additionally sampling and penalizing the states \emph{around} the dataset, and the actor applies advantage weighted updates extended with state exploration to improve the policy. We evaluate in classic continual control tasks of D4RL, showing that our method performs better than the conservative Q-function learning methods and is strongly competitive among recent SOTA methods.
TaskWeaver: A Code-First Agent Framework
Qiao, Bo, Li, Liqun, Zhang, Xu, He, Shilin, Kang, Yu, Zhang, Chaoyun, Yang, Fangkai, Dong, Hang, Zhang, Jue, Wang, Lu, Ma, Minghua, Zhao, Pu, Qin, Si, Qin, Xiaoting, Du, Chao, Xu, Yong, Lin, Qingwei, Rajmohan, Saravan, Zhang, Dongmei
Large Language Models (LLMs) have shown impressive abilities in natural language understanding and generation, leading to their use in applications such as chatbots and virtual assistants. However, existing LLM frameworks face limitations in handling domain-specific data analytics tasks with rich data structures. Moreover, they struggle with flexibility to meet diverse user requirements. To address these issues, TaskWeaver is proposed as a code-first framework for building LLM-powered autonomous agents. It converts user requests into executable code and treats user-defined plugins as callable functions. TaskWeaver provides support for rich data structures, flexible plugin usage, and dynamic plugin selection, and leverages LLM coding capabilities for complex logic. It also incorporates domain-specific knowledge through examples and ensures the secure execution of generated code. TaskWeaver offers a powerful and flexible framework for creating intelligent conversational agents that can handle complex tasks and adapt to domain-specific scenarios. The code is open-sourced at https://github.com/microsoft/TaskWeaver/.
ImDiffusion: Imputed Diffusion Models for Multivariate Time Series Anomaly Detection
Chen, Yuhang, Zhang, Chaoyun, Ma, Minghua, Liu, Yudong, Ding, Ruomeng, Li, Bowen, He, Shilin, Rajmohan, Saravan, Lin, Qingwei, Zhang, Dongmei
Anomaly detection in multivariate time series data is of paramount importance for ensuring the efficient operation of large-scale systems across diverse domains. However, accurately detecting anomalies in such data poses significant challenges. Existing approaches, including forecasting and reconstruction-based methods, struggle to address these challenges effectively. To overcome these limitations, we propose a novel anomaly detection framework named ImDiffusion, which combines time series imputation and diffusion models to achieve accurate and robust anomaly detection. The imputation-based approach employed by ImDiffusion leverages the information from neighboring values in the time series, enabling precise modeling of temporal and inter-correlated dependencies, reducing uncertainty in the data, thereby enhancing the robustness of the anomaly detection process. ImDiffusion further leverages diffusion models as time series imputers to accurately capturing complex dependencies. We leverage the step-by-step denoised outputs generated during the inference process to serve as valuable signals for anomaly prediction, resulting in improved accuracy and robustness of the detection process. We evaluate the performance of ImDiffusion via extensive experiments on benchmark datasets. The results demonstrate that our proposed framework significantly outperforms state-of-the-art approaches in terms of detection accuracy and timeliness. ImDiffusion is further integrated into the real production system in Microsoft and observe a remarkable 11.4% increase in detection F1 score compared to the legacy approach. To the best of our knowledge, ImDiffusion represents a pioneering approach that combines imputation-based techniques with time series anomaly detection, while introducing the novel use of diffusion models to the field.
Everything of Thoughts: Defying the Law of Penrose Triangle for Thought Generation
Ding, Ruomeng, Zhang, Chaoyun, Wang, Lu, Xu, Yong, Ma, Minghua, Zhang, Wei, Qin, Si, Rajmohan, Saravan, Lin, Qingwei, Zhang, Dongmei
Recent advancements in Large Language Models (LLMs) have revolutionized decision-making by breaking down complex problems into more manageable language sequences referred to as ``thoughts''. An effective thought design should consider three key perspectives: performance, efficiency, and flexibility. However, existing thought can at most exhibit two of these attributes. To address these limitations, we introduce a novel thought prompting approach called ``Everything of Thoughts'' (XoT) to defy the law of ``Penrose triangle of existing thought paradigms. XoT leverages pretrained reinforcement learning and Monte Carlo Tree Search (MCTS) to incorporate external domain knowledge into thoughts, thereby enhancing LLMs' capabilities and enabling them to generalize to unseen problems efficiently. Through the utilization of the MCTS-LLM collaborative thought revision framework, this approach autonomously produces high-quality comprehensive cognitive mappings with minimal LLM interactions. Additionally, XoT empowers LLMs to engage in unconstrained thinking, allowing for flexible cognitive mappings for problems with multiple solutions. We evaluate XoT on several challenging multi-solution problem-solving tasks, including Game of 24, 8-Puzzle, and Pocket Cube. Our results demonstrate that XoT significantly outperforms existing approaches. Notably, XoT can yield multiple solutions with just one LLM call, showcasing its remarkable proficiency in addressing complex problems across diverse domains.
Self-Guard: Empower the LLM to Safeguard Itself
Wang, Zezhong, Yang, Fangkai, Wang, Lu, Zhao, Pu, Wang, Hongru, Chen, Liang, Lin, Qingwei, Wong, Kam-Fai
The jailbreak attack can bypass the safety measures of a Large Language Model (LLM), generating harmful content. This misuse of LLM has led to negative societal consequences. Currently, there are two main approaches to address jailbreak attacks: safety training and safeguards. Safety training focuses on further training LLM to enhance its safety. On the other hand, safeguards involve implementing external models or filters to prevent harmful outputs. However, safety training has constraints in its ability to adapt to new attack types and often leads to a drop in model performance. Safeguards have proven to be of limited help. To tackle these issues, we propose a novel approach called Self-Guard, which combines the strengths of both safety methods. Self-Guard includes two stages. In the first stage, we enhance the model's ability to assess harmful content, and in the second stage, we instruct the model to consistently perform harmful content detection on its own responses. The experiment has demonstrated that Self-Guard is robust against jailbreak attacks. In the bad case analysis, we find that LLM occasionally provides harmless responses to harmful queries. Additionally, we evaluated the general capabilities of the LLM before and after safety training, providing evidence that Self-Guard does not result in the LLM's performance degradation. In sensitivity tests, Self-Guard not only avoids inducing over-sensitivity in LLM but also can even mitigate this issue.