Goto

Collaborating Authors

 Lin, Haowei


JARVIS-1: Open-World Multi-task Agents with Memory-Augmented Multimodal Language Models

arXiv.org Artificial Intelligence

Achieving human-like planning and control with multimodal observations in an open world is a key milestone for more functional generalist agents. Existing approaches can handle certain long-horizon tasks in an open world. However, they still struggle when the number of open-world tasks could potentially be infinite and lack the capability to progressively enhance task completion as game time progresses. We introduce JARVIS-1, an open-world agent that can perceive multimodal input (visual observations and human instructions), generate sophisticated plans, and perform embodied control, all within the popular yet challenging open-world Minecraft universe. Specifically, we develop JARVIS-1 on top of pre-trained multimodal language models, which map visual observations and textual instructions to plans. The plans will be ultimately dispatched to the goal-conditioned controllers. We outfit JARVIS-1 with a multimodal memory, which facilitates planning using both pre-trained knowledge and its actual game survival experiences. JARVIS-1 is the existing most general agent in Minecraft, capable of completing over 200 different tasks using control and observation space similar to humans. These tasks range from short-horizon tasks, e.g., "chopping trees" to long-horizon tasks, e.g., "obtaining a diamond pickaxe". JARVIS-1 performs exceptionally well in short-horizon tasks, achieving nearly perfect performance. In the classic long-term task of $\texttt{ObtainDiamondPickaxe}$, JARVIS-1 surpasses the reliability of current state-of-the-art agents by 5 times and can successfully complete longer-horizon and more challenging tasks. The project page is available at https://craftjarvis.org/JARVIS-1


MCU: A Task-centric Framework for Open-ended Agent Evaluation in Minecraft

arXiv.org Artificial Intelligence

To pursue the goal of creating an open-ended agent in Minecraft, an open-ended game environment with unlimited possibilities, this paper introduces a task-centric framework named MCU for Minecraft agent evaluation. Within the MCU framework, each task is measured with six distinct difficulty scores (time consumption, operational effort, planning complexity, intricacy, creativity, novelty). These scores offer a multi-dimensional assessment of a task from different angles, and thus can reveal an agent's capability on specific facets. The difficulty scores also serve as the feature of each task, which creates a meaningful task space and unveils the relationship between tasks. For efficient evaluation of Minecraft agents employing the MCU framework, we maintain a unified benchmark, namely SkillForge, which comprises representative tasks with diverse categories and difficulty distribution. We also provide convenient filters for users to select tasks to assess specific capabilities of agents. We show that MCU has the high expressivity to cover all tasks used in recent literature on Minecraft agent, and underscores the need for advancements in areas such as creativity, precise control, and out-of-distribution generalization under the goal of open-ended Minecraft agent development. In artificial intelligence (AI), an agent is a computer program or system that is designed to perceive its environment, make decisions and take actions to solve a specific task or set of tasks. On top of that, an open-ended agent is an agent that possesses the capabilities to solve arbitrary tasks that are feasible and can be solved by humans. The open-ended agent has crucial difference with task-specific agent or multi-task agent, which can only handle a limited spectrum of tasks.


FLatS: Principled Out-of-Distribution Detection with Feature-Based Likelihood Ratio Score

arXiv.org Artificial Intelligence

Detecting out-of-distribution (OOD) instances is crucial for NLP models in practical applications. Although numerous OOD detection methods exist, most of them are empirical. Backed by theoretical analysis, this paper advocates for the measurement of the "OOD-ness" of a test case $\boldsymbol{x}$ through the likelihood ratio between out-distribution $\mathcal P_{\textit{out}}$ and in-distribution $\mathcal P_{\textit{in}}$. We argue that the state-of-the-art (SOTA) feature-based OOD detection methods, such as Maha and KNN, are suboptimal since they only estimate in-distribution density $p_{\textit{in}}(\boldsymbol{x})$. To address this issue, we propose FLatS, a principled solution for OOD detection based on likelihood ratio. Moreover, we demonstrate that FLatS can serve as a general framework capable of enhancing other OOD detection methods by incorporating out-distribution density $p_{\textit{out}}(\boldsymbol{x})$ estimation. Experiments show that FLatS establishes a new SOTA on popular benchmarks. Our code is publicly available at https://github.com/linhaowei1/FLatS.


Class Incremental Learning via Likelihood Ratio Based Task Prediction

arXiv.org Artificial Intelligence

Class incremental learning (CIL) is a challenging setting of continual learning, which learns a series of tasks sequentially. Each task consists of a set of unique classes. The key feature of CIL is that no task identifier (or task-id) is provided at test time for each test sample. Predicting the task-id for each test sample is a challenging problem. An emerging theoretically justified and effective approach is to train a task-specific model for each task in a shared network for all tasks based on a task-incremental learning (TIL) method to deal with forgetting. The model for each task in this approach is an out-of-distribution (OOD) detector rather than a conventional classifier. The OOD detector can perform both within-task (in-distribution (IND)) class prediction and OOD detection. The OOD detection capability is the key for task-id prediction during inference for each test sample. However, this paper argues that using a traditional OOD detector for task-id prediction is sub-optimal because additional information (e.g., the replay data and the learned tasks) available in CIL can be exploited to design a better and principled method for task-id prediction. We call the new method TPLR (Task-id Prediction based on Likelihood Ratio}). TPLR markedly outperforms strong CIL baselines.


Continual Pre-training of Language Models

arXiv.org Artificial Intelligence

Language models (LMs) have been instrumental for the rapid advance of natural language processing. This paper studies continual pre-training of LMs, in particular, continual domain-adaptive pre-training (or continual DAP-training). Existing research has shown that further pre-training an LM using a domain corpus to adapt the LM to the domain can improve the end-task performance in the domain. This paper proposes a novel method to continually DAP-train an LM with a sequence of unlabeled domain corpora to adapt the LM to these domains to improve their end-task performances. The key novelty of our method is a soft-masking mechanism that directly controls the update to the LM. A novel proxy is also proposed to preserve the general knowledge in the original LM. Additionally, it contrasts the representations of the previously learned domain knowledge (including the general knowledge in the pre-trained LM) and the knowledge from the current full network to achieve knowledge integration. The method not only overcomes catastrophic forgetting, but also achieves knowledge transfer to improve end-task performances. Empirical evaluation demonstrates the effectiveness of the proposed method.


Adapting a Language Model While Preserving its General Knowledge

arXiv.org Artificial Intelligence

Domain-adaptive pre-training (or DA-training for short), also known as post-training, aims to train a pre-trained general-purpose language model (LM) using an unlabeled corpus of a particular domain to adapt the LM so that end-tasks in the domain can give improved performances. However, existing DA-training methods are in some sense blind as they do not explicitly identify what knowledge in the LM should be preserved and what should be changed by the domain corpus. This paper shows that the existing methods are suboptimal and proposes a novel method to perform a more informed adaptation of the knowledge in the LM by (1) soft-masking the attention heads based on their importance to best preserve the general knowledge in the LM and (2) contrasting the representations of the general and the full (both general and domain knowledge) to learn an integrated representation with both general and domain-specific knowledge. Experimental results will demonstrate the effectiveness of the proposed approach.