Not enough data to create a plot.
Try a different view from the menu above.
Lim, Chiehyeon
Sequential Recommendation on Temporal Proximities with Contrastive Learning and Self-Attention
Jung, Hansol, Seo, Hyunwoo, Lim, Chiehyeon
Sequential recommender systems identify user preferences from their past interactions to predict subsequent items optimally. Although traditional deep-learning-based models and modern transformer-based models in previous studies capture unidirectional and bidirectional patterns within user-item interactions, the importance of temporal contexts, such as individual behavioral and societal trend patterns, remains underexplored. Notably, recent models often neglect similarities in users' actions that occur implicitly among users during analogous timeframes-a concept we term vertical temporal proximity. These models primarily adapt the self-attention mechanisms of the transformer to consider the temporal context in individual user actions. Meanwhile, this adaptation still remains limited in considering the horizontal temporal proximity within item interactions, like distinguishing between subsequent item purchases within a week versus a month. To address these gaps, we propose a sequential recommendation model called TemProxRec, which includes contrastive learning and self-attention methods to consider temporal proximities both across and within user-item interactions. The proposed contrastive learning method learns representations of items selected in close temporal periods across different users to be close. Simultaneously, the proposed self-attention mechanism encodes temporal and positional contexts in a user sequence using both absolute and relative embeddings. This way, our TemProxRec accurately predicts the relevant items based on the user-item interactions within a specific timeframe. We validate this work through comprehensive experiments on TemProxRec, consistently outperforming existing models on benchmark datasets as well as showing the significance of considering the vertical and horizontal temporal proximities into sequential recommendation.
Reward Dropout Improves Control: Bi-objective Perspective on Reinforced LM
Lee, Changhun, Lim, Chiehyeon
We study the theoretical aspects of Reinforced Language Models (RLMs) from a bi-objective optimization perspective. Specifically, we consider the RLMs as a Pareto optimization problem that maximizes the two conflicting objectives, i.e., reward objective and likelihood objectives, simultaneously. Our main contribution consists of three parts. First, we establish the theoretical foundations of RLM as a Pareto optimization problem by presenting Reward Upper BOund (RUBO) and Pareto optimality. Our theoretical outcomes are supported by not only deductive proofs but also empirical results. Second, we propose Reward Dropout, a simple yet powerful method that guarantees to improve a bi-objective optimization of RLM. Lastly, we demonstrate that the Reward Dropout is consistently effective across five benchmark datasets and four benchmark LLMs, meaning that the Reward Dropout significantly improves the optimization performance of RLMs.
Layer-level activation mechanism
Yoon, Kihyuk, Lim, Chiehyeon
In this work, we propose a novel activation mechanism aimed at establishing layer-level activation (LayerAct) functions. These functions are designed to be more noise-robust compared to traditional element-level activation functions by reducing the layer-level fluctuation of the activation outputs due to shift in inputs. Moreover, the LayerAct functions achieve a zero-like mean activation output without restricting the activation output space. We present an analysis and experiments demonstrating that LayerAct functions exhibit superior noise-robustness compared to element-level activation functions, and empirically show that these functions have a zero-like mean activation. Experimental results on three benchmark image classification tasks show that LayerAct functions excel in handling noisy image datasets, outperforming element-level activation functions, while the performance on clean datasets is also superior in most cases.