Goto

Collaborating Authors

 Lierler, Yuliya


Parsing Combinatory Categorial Grammar with Answer Set Programming: Preliminary Report

arXiv.org Artificial Intelligence

Combinatory categorial grammar (CCG) is a grammar formalism used for natural language parsing. CCG assigns structured lexical categories to words and uses a small set of combinatory rules to combine these categories to parse a sentence. In this work we propose and implement a new approach to CCG parsing that relies on a prominent knowledge representation formalism, answer set programming (ASP) - a declarative programming paradigm. We formulate the task of CCG parsing as a planning problem and use an ASP computational tool to compute solutions that correspond to valid parses. Compared to other approaches, there is no need to implement a specific parsing algorithm using such a declarative method. Our approach aims at producing all semantically distinct parse trees for a given sentence. From this goal, normalization and efficiency issues arise, and we deal with them by combining and extending existing strategies. We have implemented a CCG parsing tool kit - AspCcgTk - that uses ASP as its main computational means. The C&C supertagger can be used as a preprocessor within AspCcgTk, which allows us to achieve wide-coverage natural language parsing.


Transition Systems for Model Generators - A Unifying Approach

arXiv.org Artificial Intelligence

A fundamental task for propositional logic is to compute models of propositional formulas. Programs developed for this task are called satisfiability solvers. We show that transition systems introduced by Nieuwenhuis, Oliveras, and Tinelli to model and analyze satisfiability solvers can be adapted for solvers developed for two other propositional formalisms: logic programming under the answer-set semantics, and the logic PC(ID). We show that in each case the task of computing models can be seen as "satisfiability modulo answer-set programming," where the goal is to find a model of a theory that also is an answer set of a certain program. The unifying perspective we develop shows, in particular, that solvers CLASP and MINISATID are closely related despite being developed for different formalisms, one for answer-set programming and the latter for the logic PC(ID).


Representing First-Order Causal Theories by Logic Programs

arXiv.org Artificial Intelligence

Nonmonotonic causal logic, introduced by Norman McCain and Hudson Turner, became a basis for the semantics of several expressive action languages. McCain's embedding of definite propositional causal theories into logic programming paved the way to the use of answer set solvers for answering queries about actions described in such languages. In this paper we extend this embedding to nondefinite theories and to first-order causal logic.


On Elementary Loops of Logic Programs

arXiv.org Artificial Intelligence

Using the notion of an elementary loop, Gebser and Schaub refined the theorem on loop formulas due to Lin and Zhao by considering loop formulas of elementary loops only. In this article, we reformulate their definition of an elementary loop, extend it to disjunctive programs, and study several properties of elementary loops, including how maximal elementary loops are related to minimal unfounded sets. The results provide useful insights into the stable model semantics in terms of elementary loops. For a nondisjunctive program, using a graph-theoretic characterization of an elementary loop, we show that the problem of recognizing an elementary loop is tractable. On the other hand, we show that the corresponding problem is {\sf coNP}-complete for a disjunctive program. Based on the notion of an elementary loop, we present the class of Head-Elementary-loop-Free (HEF) programs, which strictly generalizes the class of Head-Cycle-Free (HCF) programs due to Ben-Eliyahu and Dechter. Like an HCF program, an HEF program can be turned into an equivalent nondisjunctive program in polynomial time by shifting head atoms into the body.


Abstract Answer Set Solvers with Learning

arXiv.org Artificial Intelligence

Nieuwenhuis, Oliveras, and Tinelli (2006) showed how to describe enhancements of the Davis-Putnam-Logemann-Loveland algorithm using transition systems, instead of pseudocode. We design a similar framework for several algorithms that generate answer sets for logic programs: Smodels, Smodels-cc, Asp-Sat with Learning (Cmodels), and a newly designed and implemented algorithm Sup. This approach to describing answer set solvers makes it easier to prove their correctness, to compare them, and to design new systems.