Goto

Collaborating Authors

 Liang, Bin


CUE: An Uncertainty Interpretation Framework for Text Classifiers Built on Pre-Trained Language Models

arXiv.org Artificial Intelligence

Text classifiers built on Pre-trained Language Models (PLMs) have achieved remarkable progress in various tasks including sentiment analysis, natural language inference, and question-answering. However, the occurrence of uncertain predictions by these classifiers poses a challenge to their reliability when deployed in practical applications. Much effort has been devoted to designing various probes in order to understand what PLMs capture. But few studies have delved into factors influencing PLM-based classifiers' predictive uncertainty. In this paper, we propose a novel framework, called CUE, which aims to interpret uncertainties inherent in the predictions of PLM-based models. In particular, we first map PLM-encoded representations to a latent space via a variational auto-encoder. We then generate text representations by perturbing the latent space which causes fluctuation in predictive uncertainty. By comparing the difference in predictive uncertainty between the perturbed and the original text representations, we are able to identify the latent dimensions responsible for uncertainty and subsequently trace back to the input features that contribute to such uncertainty. Our extensive experiments on four benchmark datasets encompassing linguistic acceptability classification, emotion classification, and natural language inference show the feasibility of our proposed framework. Our source code is available at: https://github.com/lijiazheng99/CUE.


Dynamics-Adaptive Continual Reinforcement Learning via Progressive Contextualization

arXiv.org Artificial Intelligence

A key challenge of continual reinforcement learning (CRL) in dynamic environments is to promptly adapt the RL agent's behavior as the environment changes over its lifetime, while minimizing the catastrophic forgetting of the learned information. To address this challenge, in this article, we propose DaCoRL, i.e., dynamics-adaptive continual RL. DaCoRL learns a context-conditioned policy using progressive contextualization, which incrementally clusters a stream of stationary tasks in the dynamic environment into a series of contexts and opts for an expandable multihead neural network to approximate the policy. Specifically, we define a set of tasks with similar dynamics as an environmental context and formalize context inference as a procedure of online Bayesian infinite Gaussian mixture clustering on environment features, resorting to online Bayesian inference to infer the posterior distribution over contexts. Under the assumption of a Chinese restaurant process prior, this technique can accurately classify the current task as a previously seen context or instantiate a new context as needed without relying on any external indicator to signal environmental changes in advance. Furthermore, we employ an expandable multihead neural network whose output layer is synchronously expanded with the newly instantiated context, and a knowledge distillation regularization term for retaining the performance on learned tasks. As a general framework that can be coupled with various deep RL algorithms, DaCoRL features consistent superiority over existing methods in terms of the stability, overall performance and generalization ability, as verified by extensive experiments on several robot navigation and MuJoCo locomotion tasks.


Data-driven prognostics based on time-frequency analysis and symbolic recurrent neural network for fuel cells under dynamic load

arXiv.org Artificial Intelligence

Data-centric prognostics is beneficial to improve the reliability and safety of proton exchange membrane fuel cell (PEMFC). For the prognostics of PEMFC operating under dynamic load, the challenges come from extracting degradation features, improving prediction accuracy, expanding the prognostics horizon, and reducing computational cost. To address these issues, this work proposes a data-driven PEMFC prognostics approach, in which Hilbert-Huang transform is used to extract health indicator in dynamic operating conditions and symbolic-based gated recurrent unit model is used to enhance the accuracy of life prediction. Comparing with other state-of-the-art methods, the proposed data-driven prognostics approach provides a competitive prognostics horizon with lower computational cost. The prognostics performance shows consistency and generalizability under different failure threshold settings.


Foldsformer: Learning Sequential Multi-Step Cloth Manipulation With Space-Time Attention

arXiv.org Artificial Intelligence

Sequential multi-step cloth manipulation is a challenging problem in robotic manipulation, requiring a robot to perceive the cloth state and plan a sequence of chained actions leading to the desired state. Most previous works address this problem in a goal-conditioned way, and goal observation must be given for each specific task and cloth configuration, which is not practical and efficient. Thus, we present a novel multi-step cloth manipulation planning framework named Foldformer. Foldformer can complete similar tasks with only a general demonstration and utilize a space-time attention mechanism to capture the instruction information behind this demonstration. We experimentally evaluate Foldsformer on four representative sequential multi-step manipulation tasks and show that Foldsformer significantly outperforms state-of-the-art approaches in simulation. Foldformer can complete multi-step cloth manipulation tasks even when configurations of the cloth (e.g., size and pose) vary from configurations in the general demonstrations. Furthermore, our approach can be transferred from simulation to the real world without additional training or domain randomization. Despite training on rectangular clothes, we also show that our approach can generalize to unseen cloth shapes (T-shirts and shorts). Videos and source code are available at: https://sites.google.com/view/foldsformer.


Domain Generalization by Learning and Removing Domain-specific Features

arXiv.org Artificial Intelligence

Deep Neural Networks (DNNs) suffer from domain shift when the test dataset follows a distribution different from the training dataset. Domain generalization aims to tackle this issue by learning a model that can generalize to unseen domains. In this paper, we propose a new approach that aims to explicitly remove domain-specific features for domain generalization. Following this approach, we propose a novel framework called Learning and Removing Domain-specific features for Generalization (LRDG) that learns a domain-invariant model by tactically removing domain-specific features from the input images. Specifically, we design a classifier to effectively learn the domain-specific features for each source domain, respectively. We then develop an encoder-decoder network to map each input image into a new image space where the learned domain-specific features are removed. With the images output by the encoder-decoder network, another classifier is designed to learn the domain-invariant features to conduct image classification. Extensive experiments demonstrate that our framework achieves superior performance compared with state-of-the-art methods.


Distributed Deep Reinforcement Learning: A Survey and A Multi-Player Multi-Agent Learning Toolbox

arXiv.org Artificial Intelligence

With the breakthrough of AlphaGo, deep reinforcement learning becomes a recognized technique for solving sequential decision-making problems. Despite its reputation, data inefficiency caused by its trial and error learning mechanism makes deep reinforcement learning hard to be practical in a wide range of areas. Plenty of methods have been developed for sample efficient deep reinforcement learning, such as environment modeling, experience transfer, and distributed modifications, amongst which, distributed deep reinforcement learning has shown its potential in various applications, such as human-computer gaming, and intelligent transportation. In this paper, we conclude the state of this exciting field, by comparing the classical distributed deep reinforcement learning methods, and studying important components to achieve efficient distributed learning, covering single player single agent distributed deep reinforcement learning to the most complex multiple players multiple agents distributed deep reinforcement learning. Furthermore, we review recently released toolboxes that help to realize distributed deep reinforcement learning without many modifications of their non-distributed versions. By analyzing their strengths and weaknesses, a multi-player multi-agent distributed deep reinforcement learning toolbox is developed and released, which is further validated on Wargame, a complex environment, showing usability of the proposed toolbox for multiple players and multiple agents distributed deep reinforcement learning under complex games. Finally, we try to point out challenges and future trends, hoping this brief review can provide a guide or a spark for researchers who are interested in distributed deep reinforcement learning.


Policy Learning for Nonlinear Model Predictive Control with Application to USVs

arXiv.org Artificial Intelligence

The unaffordable computation load of nonlinear model predictive control (NMPC) has prevented it for being used in robots with high sampling rates for decades. This paper is concerned with the policy learning problem for nonlinear MPC with system constraints, and its applications to unmanned surface vehicles (USVs), where the nonlinear MPC policy is learned offline and deployed online to resolve the computational complexity issue. A deep neural networks (DNN) based policy learning MPC (PL-MPC) method is proposed to avoid solving nonlinear optimal control problems online. The detailed policy learning method is developed and the PL-MPC algorithm is designed. The strategy to ensure the practical feasibility of policy implementation is proposed, and it is theoretically proved that the closed-loop system under the proposed method is asymptotically stable in probability. In addition, we apply the PL-MPC algorithm successfully to the motion control of USVs. It is shown that the proposed algorithm can be implemented at a sampling rate up to $5 Hz$ with high-precision motion control. The experiment video is available via:\url{https://v.youku.com/v_show/id_XNTkwMTM0NzM5Ng==.html


Probability Density Estimation Based Imitation Learning

arXiv.org Artificial Intelligence

Imitation Learning (IL) is an effective learning paradigm exploiting the interactions between agents and environments. It does not require explicit reward signals and instead tries to recover desired policies using expert demonstrations. In general, IL methods can be categorized into Behavioral Cloning (BC) and Inverse Reinforcement Learning (IRL). In this work, a novel reward function based on probability density estimation is proposed for IRL, which can significantly reduce the complexity of existing IRL methods. Furthermore, we prove that the theoretically optimal policy derived from our reward function is identical to the expert policy as long as it is deterministic. Consequently, an IRL problem can be gracefully transformed into a probability density estimation problem. Based on the proposed reward function, we present a "watch-try-learn" style framework named Probability Density Estimation based Imitation Learning (PDEIL), which can work in both discrete and continuous action spaces. Finally, comprehensive experiments in the Gym environment show that PDEIL is much more efficient than existing algorithms in recovering rewards close to the ground truth.


AI in Games: Techniques, Challenges and Opportunities

arXiv.org Artificial Intelligence

With breakthrough of AlphaGo, AI in human-computer game has become a very hot topic attracting researchers all around the world, which usually serves as an effective standard for testing artificial intelligence. Various game AI systems (AIs) have been developed such as Libratus, OpenAI Five and AlphaStar, beating professional human players. In this paper, we survey recent successful game AIs, covering board game AIs, card game AIs, first-person shooting game AIs and real time strategy game AIs. Through this survey, we 1) compare the main difficulties among different kinds of games for the intelligent decision making field ; 2) illustrate the mainstream frameworks and techniques for developing professional level AIs; 3) raise the challenges or drawbacks in the current AIs for intelligent decision making; and 4) try to propose future trends in the games and intelligent decision making techniques. Finally, we hope this brief review can provide an introduction for beginners, inspire insights for researchers in the filed of AI in games.


Offline Reinforcement Learning with Value-based Episodic Memory

arXiv.org Artificial Intelligence

Offline reinforcement learning (RL) shows promise of applying RL to real-world problems by effectively utilizing previously collected data. Most existing offline RL algorithms use regularization or constraints to suppress extrapolation error for actions outside the dataset. In this paper, we adopt a different framework, which learns the V -function instead of the Q-function to naturally keep the learning procedure within the support of an offline dataset. To enable effective generalization while maintaining proper conservatism in offline learning, we propose Expectile V -Learning (EVL), which smoothly interpolates between the optimal value learning and behavior cloning. Further, we introduce implicit planning along offline trajectories to enhance learned V -values and accelerate convergence. Together, we present a new offline method called Value-based Episodic Memory (VEM). We provide theoretical analysis for the convergence properties of our proposed VEM method, and empirical results in the D4RL benchmark show that our method achieves superior performance in most tasks, particularly in sparse-reward tasks.