Goto

Collaborating Authors

 Liang, Bin


Learning Diverse Risk Preferences in Population-based Self-play

arXiv.org Artificial Intelligence

Among the great successes of Reinforcement Learning (RL), self-play algorithms play an essential role in solving competitive games. Current self-play algorithms optimize the agent to maximize expected win-rates against its current or historical copies, making it often stuck in the local optimum and its strategy style simple and homogeneous. A possible solution is to improve the diversity of policies, which helps the agent break the stalemate and enhances its robustness when facing different opponents. However, enhancing diversity in the self-play algorithms is not trivial. In this paper, we aim to introduce diversity from the perspective that agents could have diverse risk preferences in the face of uncertainty. Specifically, we design a novel reinforcement learning algorithm called Risk-sensitive Proximal Policy Optimization (RPPO), which smoothly interpolates between worst-case and best-case policy learning and allows for policy learning with desired risk preferences. Seamlessly integrating RPPO with population-based self-play, agents in the population optimize dynamic risk-sensitive objectives with experiences from playing against diverse opponents. Empirical results show that our method achieves comparable or superior performance in competitive games and that diverse modes of behaviors emerge. Our code is public online at \url{https://github.com/Jackory/RPBT}.


Path Generation for Wheeled Robots Autonomous Navigation on Vegetated Terrain

arXiv.org Artificial Intelligence

Wheeled robot navigation has been widely used in urban environments, but little research has been conducted on its navigation in wild vegetation. External sensors (LiDAR, camera etc.) are often used to construct point cloud map of the surrounding environment, however, the supporting rigid ground used for travelling cannot be detected due to the occlusion of vegetation. This often causes unsafe or not smooth path during planning process. To address the drawback, we propose the PE-RRT* algorithm, which effectively combines a novel support plane estimation method and sampling algorithm to generate real-time feasible and safe path in vegetation environments. In order to accurately estimate the support plane, we combine external perception and proprioception, and use Multivariate Gaussian Processe Regression (MV-GPR) to estimate the terrain at the sampling nodes. We build a physical experimental platform and conduct experiments in different outdoor environments. Experimental results show that our method has high safety, robustness and generalization.


Hybrid Trajectory Optimization for Autonomous Terrain Traversal of Articulated Tracked Robots

arXiv.org Artificial Intelligence

Autonomous terrain traversal of articulated tracked robots can reduce operator cognitive load to enhance task efficiency and facilitate extensive deployment. We present a novel hybrid trajectory optimization method aimed at generating efficient, stable, and smooth traversal motions. To achieve this, we develop a planar robot-terrain contact model and divide the robot's motion into hybrid modes of driving and traversing. By using a generalized coordinate description, the configuration space dimension is reduced, which facilitates real-time planning. The hybrid trajectory optimization is transcribed into a nonlinear programming problem and divided into subproblems to be solved in a receding-horizon planning fashion. Mode switching is facilitated by associating optimized motion durations with a predefined traversal sequence. A multi-objective cost function is formulated to further improve the traversal performance. Additionally, map sampling, terrain simplification, and tracking controller modules are integrated into the autonomous terrain traversal system. Our approach is validated in simulation and real-world scenarios with the Searcher robotic platform. Comparative experiments with expert operator control and state-of-the-art methods show advantages in terms of time and energy efficiency, stability, and smoothness of motion.


From Knowing to Doing: Learning Diverse Motor Skills through Instruction Learning

arXiv.org Artificial Intelligence

Recent years have witnessed many successful trials in the robot learning field. For contact-rich robotic tasks, it is challenging to learn coordinated motor skills by reinforcement learning. Imitation learning solves this problem by using a mimic reward to encourage the robot to track a given reference trajectory. However, imitation learning is not so efficient and may constrain the learned motion. In this paper, we propose instruction learning, which is inspired by the human learning process and is highly efficient, flexible, and versatile for robot motion learning. Instead of using a reference signal in the reward, instruction learning applies a reference signal directly as a feedforward action, and it is combined with a feedback action learned by reinforcement learning to control the robot. Besides, we propose the action bounding technique and remove the mimic reward, which is shown to be crucial for efficient and flexible learning. We compare the performance of instruction learning with imitation learning, indicating that instruction learning can greatly speed up the training process and guarantee learning the desired motion correctly. The effectiveness of instruction learning is validated through a bunch of motion learning examples for a biped robot and a quadruped robot, where skills can be learned typically within several million steps. Besides, we also conduct sim-to-real transfer and online learning experiments on a real quadruped robot. Instruction learning has shown great merits and potential, making it a promising alternative for imitation learning.


Evaluation Metrics in the Era of GPT-4: Reliably Evaluating Large Language Models on Sequence to Sequence Tasks

arXiv.org Artificial Intelligence

Large Language Models (LLMs) evaluation is a patchy and inconsistent landscape, and it is becoming clear that the quality of automatic evaluation metrics is not keeping up with the pace of development of generative models. We aim to improve the understanding of current models' performance by providing a preliminary and hybrid evaluation on a range of open and closed-source generative LLMs on three NLP benchmarks: text summarisation, text simplification and grammatical error correction (GEC), using both automatic and human evaluation. We also explore the potential of the recently released GPT-4 to act as an evaluator. We find that ChatGPT consistently outperforms many other popular models according to human reviewers on the majority of metrics, while scoring much more poorly when using classic automatic evaluation metrics. We also find that human reviewers rate the gold reference as much worse than the best models' outputs, indicating the poor quality of many popular benchmarks. Finally, we find that GPT-4 is capable of ranking models' outputs in a way which aligns reasonably closely to human judgement despite task-specific variations, with a lower alignment in the GEC task.


Cue-CoT: Chain-of-thought Prompting for Responding to In-depth Dialogue Questions with LLMs

arXiv.org Artificial Intelligence

Large Language Models (LLMs), such as \texttt{ChatGPT}, greatly empower dialogue systems with strong language understanding and generation capabilities. However, most of the previous works prompt the LLMs to directly generate a response based on the dialogue context, overlooking the underlying linguistic cues about the user status exhibited in the context. Such in-depth dialogue scenarios are challenging for existing LLMs to figure out the user's hidden needs and respond satisfactorily through a single-step inference. To this end, we propose a novel linguistic cue-based chain-of-thoughts (\textit{Cue}-CoT), which enhances the LLMs inference with an intermediate reasoning step to find cues exhibited in the dialogue, aiming to provide a more personalized and engaging response. To evaluate the approach, we build a benchmark with in-depth dialogue questions, consisting of 6 datasets in both Chinese and English, targeting 3 major linguistic cues during the conversation: \textit{personality}, \textit{emotion}, and \textit{psychology}. We conduct extensive experiments on the proposed benchmark with 5 LLMs under both zero-shot and one-shot settings. Empirical results demonstrate our proposed \textit{Cue}-CoT method outperforms standard prompting methods in terms of both \textit{helpfulness} and \textit{acceptability} on all datasets.


Learning to Assist Different Wearers in Multitasks: Efficient and Individualized Human-In-the-Loop Adaption Framework for Exoskeleton Robots

arXiv.org Artificial Intelligence

One of the typical purposes of using lower-limb exoskeleton robots is to provide assistance to the wearer by supporting their weight and augmenting their physical capabilities according to a given task and human motion intentions. The generalizability of robots across different wearers in multiple tasks is important to ensure that the robot can provide correct and effective assistance in actual implementation. However, most lower-limb exoskeleton robots exhibit only limited generalizability. Therefore, this paper proposes a human-in-the-loop learning and adaptation framework for exoskeleton robots to improve their performance in various tasks and for different wearers. To suit different wearers, an individualized walking trajectory is generated online using dynamic movement primitives and Bayes optimization. To accommodate various tasks, a task translator is constructed using a neural network to generalize a trajectory to more complex scenarios. These generalization techniques are integrated into a unified variable impedance model, which regulates the exoskeleton to provide assistance while ensuring safety. In addition, an anomaly detection network is developed to quantitatively evaluate the wearer's comfort, which is considered in the trajectory learning procedure and contributes to the relaxation of conflicts in impedance control. The proposed framework is easy to implement, because it requires proprioceptive sensors only to perform and deploy data-efficient learning schemes. This makes the exoskeleton practical for deployment in complex scenarios, accommodating different walking patterns, habits, tasks, and conflicts. Experiments and comparative studies on a lower-limb exoskeleton robot are performed to demonstrate the effectiveness of the proposed framework.


RH-Map: Online Map Construction Framework of Dynamic Objects Removal Based on Region-wise Hash Map Structure

arXiv.org Artificial Intelligence

Mobile robots navigating in outdoor environments frequently encounter the issue of undesired traces left by dynamic objects and manifested as obstacles on map, impeding robots from achieving accurate localization and effective navigation. To tackle the problem, a novel map construction framework based on 3D region-wise hash map structure (RH-Map) is proposed, consisting of front-end scan fresher and back-end removal modules, which realizes real-time map construction and online dynamic object removal (DOR). First, a two-layer 3D region-wise hash map structure of map management is proposed for effective online DOR. Then, in scan fresher, region-wise ground plane estimation (R-GPE) is adopted for estimating and preserving ground information and Scan-to-Map Removal (S2M-R) is proposed to discriminate and remove dynamic regions. Moreover, the lightweight back-end removal module maintaining keyframes is proposed for further DOR. As experimentally verified on SemanticKITTI, our proposed framework yields promising performance on online DOR of map construction compared with the state-of-the-art methods. And we also validate the proposed framework in real-world environments.


MMSD2.0: Towards a Reliable Multi-modal Sarcasm Detection System

arXiv.org Artificial Intelligence

Multi-modal sarcasm detection has attracted much recent attention. Nevertheless, the existing benchmark (MMSD) has some shortcomings that hinder the development of reliable multi-modal sarcasm detection system: (1) There are some spurious cues in MMSD, leading to the model bias learning; (2) The negative samples in MMSD are not always reasonable. To solve the aforementioned issues, we introduce MMSD2.0, a correction dataset that fixes the shortcomings of MMSD, by removing the spurious cues and re-annotating the unreasonable samples. Meanwhile, we present a novel framework called multi-view CLIP that is capable of leveraging multi-grained cues from multiple perspectives (i.e., text, image, and text-image interaction view) for multi-modal sarcasm detection. Extensive experiments show that MMSD2.0 is a valuable benchmark for building reliable multi-modal sarcasm detection systems and multi-view CLIP can significantly outperform the previous best baselines.


Quadruped Guidance Robot for the Visually Impaired: A Comfort-Based Approach

arXiv.org Artificial Intelligence

Guidance robots that can guide people and avoid various obstacles, could potentially be owned by more visually impaired people at a fairly low cost. Most of the previous guidance robots for the visually impaired ignored the human response behavior and comfort, treating the human as an appendage dragged by the robot, which can lead to imprecise guidance of the human and sudden changes in the traction force experienced by the human. In this paper, we propose a novel quadruped guidance robot system with a comfort-based concept. We design a controllable traction device that can adjust the length and force between human and robot to ensure comfort. To allow the human to be guided safely and comfortably to the target position in complex environments, our proposed human motion planner can plan the traction force with the force-based human motion model. To track the planned force, we also propose a robot motion planner that can generate the specific robot motion command and design the force control device. Our system has been deployed on Unitree Laikago quadrupedal platform and validated in real-world scenarios.