Lian, Defu
Towards Anytime Fine-tuning: Continually Pre-trained Language Models with Hypernetwork Prompt
Jiang, Gangwei, Jiang, Caigao, Xue, Siqiao, Zhang, James Y., Zhou, Jun, Lian, Defu, Wei, Ying
Continual pre-training has been urgent for adapting a pre-trained model to a multitude of domains and tasks in the fast-evolving world. In practice, a continually pre-trained model is expected to demonstrate not only greater capacity when fine-tuned on pre-trained domains but also a non-decreasing performance on unseen ones. In this work, we first investigate such anytime fine-tuning effectiveness of existing continual pre-training approaches, concluding with unanimously decreased performance on unseen domains. To this end, we propose a prompt-guided continual pre-training method, where we train a hypernetwork to generate domain-specific prompts by both agreement and disagreement losses. The agreement loss maximally preserves the generalization of a pre-trained model to new domains, and the disagreement one guards the exclusiveness of the generated hidden states for each domain. Remarkably, prompts by the hypernetwork alleviate the domain identity when fine-tuning and promote knowledge transfer across domains. Our method achieved improvements of 3.57% and 3.4% on two real-world datasets (including domain shift and temporal shift), respectively, demonstrating its efficacy.
Large-Scale OD Matrix Estimation with A Deep Learning Method
Xiong, Zheli, Lian, Defu, Chen, Enhong, Chen, Gang, Cheng, Xiaomin
The estimation of origin-destination (OD) matrices is a crucial aspect of Intelligent Transport Systems (ITS). It involves adjusting an initial OD matrix by regressing the current observations like traffic counts of road sections (e.g., using least squares). However, the OD estimation problem lacks sufficient constraints and is mathematically underdetermined. To alleviate this problem, some researchers incorporate a prior OD matrix as a target in the regression to provide more structural constraints. However, this approach is highly dependent on the existing prior matrix, which may be outdated. Others add structural constraints through sensor data, such as vehicle trajectory and speed, which can reflect more current structural constraints in real-time. Our proposed method integrates deep learning and numerical optimization algorithms to infer matrix structure and guide numerical optimization. This approach combines the advantages of both deep learning and numerical optimization algorithms. The neural network(NN) learns to infer structural constraints from probe traffic flows, eliminating dependence on prior information and providing real-time performance. Additionally, due to the generalization capability of NN, this method is economical in engineering. We conducted tests to demonstrate the good generalization performance of our method on a large-scale synthetic dataset. Subsequently, we verified the stability of our method on real traffic data. Our experiments provided confirmation of the benefits of combining NN and numerical optimization.
Toward Robust Recommendation via Real-time Vicinal Defense
Xu, Yichang, Wu, Chenwang, Lian, Defu
Recommender systems have been shown to be vulnerable to poisoning attacks, where malicious data is injected into the dataset to cause the recommender system to provide biased recommendations. To defend against such attacks, various robust learning methods have been proposed. However, most methods are model-specific or attack-specific, making them lack generality, while other methods, such as adversarial training, are oriented towards evasion attacks and thus have a weak defense strength in poisoning attacks. In this paper, we propose a general method, Real-time Vicinal Defense (RVD), which leverages neighboring training data to fine-tune the model before making a recommendation for each user. RVD works in the inference phase to ensure the robustness of the specific sample in real-time, so there is no need to change the model structure and training process, making it more practical. Extensive experimental results demonstrate that RVD effectively mitigates targeted poisoning attacks across various models without sacrificing accuracy. Moreover, the defensive effect can be further amplified when our method is combined with other strategies.
Label Deconvolution for Node Representation Learning on Large-scale Attributed Graphs against Learning Bias
Shi, Zhihao, Wang, Jie, Lu, Fanghua, Chen, Hanzhu, Lian, Defu, Wang, Zheng, Ye, Jieping, Wu, Feng
Node representation learning on attributed graphs -- whose nodes are associated with rich attributes (e.g., texts and protein sequences) -- plays a crucial role in many important downstream tasks. To encode the attributes and graph structures simultaneously, recent studies integrate pre-trained models with graph neural networks (GNNs), where pre-trained models serve as node encoders (NEs) to encode the attributes. As jointly training large NEs and GNNs on large-scale graphs suffers from severe scalability issues, many methods propose to train NEs and GNNs separately. Consequently, they do not take feature convolutions in GNNs into consideration in the training phase of NEs, leading to a significant learning bias from that by the joint training. To address this challenge, we propose an efficient label regularization technique, namely Label Deconvolution (LD), to alleviate the learning bias by a novel and highly scalable approximation to the inverse mapping of GNNs. The inverse mapping leads to an objective function that is equivalent to that by the joint training, while it can effectively incorporate GNNs in the training phase of NEs against the learning bias. More importantly, we show that LD converges to the optimal objective function values by thejoint training under mild assumptions. Experiments demonstrate LD significantly outperforms state-of-the-art methods on Open Graph Benchmark datasets.
Interactive Graph Convolutional Filtering
Zhang, Jin, Lian, Defu, Xie, Hong, Li, Yawen, Chen, Enhong
Interactive Recommender Systems (IRS) have been increasingly used in various domains, including personalized article recommendation, social media, and online advertising. However, IRS faces significant challenges in providing accurate recommendations under limited observations, especially in the context of interactive collaborative filtering. These problems are exacerbated by the cold start problem and data sparsity problem. Existing Multi-Armed Bandit methods, despite their carefully designed exploration strategies, often struggle to provide satisfactory results in the early stages due to the lack of interaction data. Furthermore, these methods are computationally intractable when applied to non-linear models, limiting their applicability. To address these challenges, we propose a novel method, the Interactive Graph Convolutional Filtering model. Our proposed method extends interactive collaborative filtering into the graph model to enhance the performance of collaborative filtering between users and items. We incorporate variational inference techniques to overcome the computational hurdles posed by non-linear models. Furthermore, we employ Bayesian meta-learning methods to effectively address the cold-start problem and derive theoretical regret bounds for our proposed method, ensuring a robust performance guarantee. Extensive experimental results on three real-world datasets validate our method and demonstrate its superiority over existing baselines.
Deep Task-specific Bottom Representation Network for Multi-Task Recommendation
Liu, Qi, Zhou, Zhilong, Jiang, Gangwei, Ge, Tiezheng, Lian, Defu
Neural-based multi-task learning (MTL) has gained significant improvement, and it has been successfully applied to recommendation system (RS). Recent deep MTL methods for RS (e.g. MMoE, PLE) focus on designing soft gating-based parameter-sharing networks that implicitly learn a generalized representation for each task. However, MTL methods may suffer from performance degeneration when dealing with conflicting tasks, as negative transfer effects can occur on the task-shared bottom representation. This can result in a reduced capacity for MTL methods to capture task-specific characteristics, ultimately impeding their effectiveness and hindering the ability to generalize well on all tasks. In this paper, we focus on the bottom representation learning of MTL in RS and propose the Deep Task-specific Bottom Representation Network (DTRN) to alleviate the negative transfer problem. DTRN obtains task-specific bottom representation explicitly by making each task have its own representation learning network in the bottom representation modeling stage. Specifically, it extracts the user's interests from multiple types of behavior sequences for each task through the parameter-efficient hypernetwork. To further obtain the dedicated representation for each task, DTRN refines the representation of each feature by employing a SENet-like network for each task. The two proposed modules can achieve the purpose of getting task-specific bottom representation to relieve tasks' mutual interference. Moreover, the proposed DTRN is flexible to combine with existing MTL methods. Experiments on one public dataset and one industrial dataset demonstrate the effectiveness of the proposed DTRN.
KMF: Knowledge-Aware Multi-Faceted Representation Learning for Zero-Shot Node Classification
Wu, Likang, Jiang, Junji, Zhao, Hongke, Wang, Hao, Lian, Defu, Zhang, Mengdi, Chen, Enhong
Recently, Zero-Shot Node Classification (ZNC) has been an emerging and crucial task in graph data analysis. This task aims to predict nodes from unseen classes which are unobserved in the training process. Existing work mainly utilizes Graph Neural Networks (GNNs) to associate features' prototypes and labels' semantics thus enabling knowledge transfer from seen to unseen classes. However, the multi-faceted semantic orientation in the feature-semantic alignment has been neglected by previous work, i.e. the content of a node usually covers diverse topics that are relevant to the semantics of multiple labels. It's necessary to separate and judge the semantic factors that tremendously affect the cognitive ability to improve the generality of models. To this end, we propose a Knowledge-Aware Multi-Faceted framework (KMF) that enhances the richness of label semantics via the extracted KG (Knowledge Graph)-based topics. And then the content of each node is reconstructed to a topic-level representation that offers multi-faceted and fine-grained semantic relevancy to different labels. Due to the particularity of the graph's instance (i.e., node) representation, a novel geometric constraint is developed to alleviate the problem of prototype drift caused by node information aggregation. Finally, we conduct extensive experiments on several public graph datasets and design an application of zero-shot cross-domain recommendation. The quantitative results demonstrate both the effectiveness and generalization of KMF with the comparison of state-of-the-art baselines.
When Large Language Models Meet Personalization: Perspectives of Challenges and Opportunities
Chen, Jin, Liu, Zheng, Huang, Xu, Wu, Chenwang, Liu, Qi, Jiang, Gangwei, Pu, Yuanhao, Lei, Yuxuan, Chen, Xiaolong, Wang, Xingmei, Lian, Defu, Chen, Enhong
The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.
A DeepLearning Framework for Dynamic Estimation of Origin-Destination Sequence
Xiong, Zheli, Lian, Defu, Chen, Enhong, Chen, Gang, Cheng, Xiaomin
OD matrix estimation is a critical problem in the transportation domain. The principle method uses the traffic sensor measured information such as traffic counts to estimate the traffic demand represented by the OD matrix. The problem is divided into two categories: static OD matrix estimation and dynamic OD matrices sequence(OD sequence for short) estimation. The above two face the underdetermination problem caused by abundant estimated parameters and insufficient constraint information. In addition, OD sequence estimation also faces the lag challenge: due to different traffic conditions such as congestion, identical vehicle will appear on different road sections during the same observation period, resulting in identical OD demands correspond to different trips. To this end, this paper proposes an integrated method, which uses deep learning methods to infer the structure of OD sequence and uses structural constraints to guide traditional numerical optimization. Our experiments show that the neural network(NN) can effectively infer the structure of the OD sequence and provide practical constraints for numerical optimization to obtain better results. Moreover, the experiments show that provided structural information contains not only constraints on the spatial structure of OD matrices but also provides constraints on the temporal structure of OD sequence, which solve the effect of the lagging problem well.
Learning to Substitute Spans towards Improving Compositional Generalization
Li, Zhaoyi, Wei, Ying, Lian, Defu
Despite the rising prevalence of neural sequence models, recent empirical evidences suggest their deficiency in compositional generalization. One of the current de-facto solutions to this problem is compositional data augmentation, aiming to incur additional compositional inductive bias. Nonetheless, the improvement offered by existing handcrafted augmentation strategies is limited when successful systematic generalization of neural sequence models requires multi-grained compositional bias (i.e., not limited to either lexical or structural biases only) or differentiation of training sequences in an imbalanced difficulty distribution. To address the two challenges, we first propose a novel compositional augmentation strategy dubbed \textbf{Span} \textbf{Sub}stitution (SpanSub) that enables multi-grained composition of substantial substructures in the whole training set. Over and above that, we introduce the \textbf{L}earning \textbf{to} \textbf{S}ubstitute \textbf{S}pan (L2S2) framework which empowers the learning of span substitution probabilities in SpanSub in an end-to-end manner by maximizing the loss of neural sequence models, so as to outweigh those challenging compositions with elusive concepts and novel surroundings. Our empirical results on three standard compositional generalization benchmarks, including SCAN, COGS and GeoQuery (with an improvement of at most 66.5\%, 10.3\%, 1.2\%, respectively), demonstrate the superiority of SpanSub, %the learning framework L2S2 and their combination.