Lian, Defu
Understanding the planning of LLM agents: A survey
Huang, Xu, Liu, Weiwen, Chen, Xiaolong, Wang, Xingmei, Wang, Hao, Lian, Defu, Wang, Yasheng, Tang, Ruiming, Chen, Enhong
As Large Language Models (LLMs) have shown significant intelligence, the progress to leverage LLMs as planning modules of autonomous agents has attracted more attention. This survey provides the first systematic view of LLM-based agents planning, covering recent works aiming to improve planning ability. We provide a taxonomy of existing works on LLM-Agent planning, which can be categorized into Task Decomposition, Plan Selection, External Module, Reflection and Memory. Comprehensive analyses are conducted for each direction, and further challenges for the field of research are discussed.
Recommender AI Agent: Integrating Large Language Models for Interactive Recommendations
Huang, Xu, Lian, Jianxun, Lei, Yuxuan, Yao, Jing, Lian, Defu, Xie, Xing
Recommender models excel at providing domain-specific item recommendations by leveraging extensive user behavior data. Despite their ability to act as lightweight domain experts, they struggle to perform versatile tasks such as providing explanations and engaging in conversations. On the other hand, large language models (LLMs) represent a significant step towards artificial general intelligence, showcasing remarkable capabilities in instruction comprehension, commonsense reasoning, and human interaction. However, LLMs lack the knowledge of domain-specific item catalogs and behavioral patterns, particularly in areas that diverge from general world knowledge, such as online e-commerce. Finetuning LLMs for each domain is neither economic nor efficient. In this paper, we bridge the gap between recommender models and LLMs, combining their respective strengths to create a versatile and interactive recommender system. We introduce an efficient framework called \textbf{InteRecAgent}, which employs LLMs as the brain and recommender models as tools. We first outline a minimal set of essential tools required to transform LLMs into InteRecAgent. We then propose an efficient workflow within InteRecAgent for task execution, incorporating key components such as memory components, dynamic demonstration-augmented task planning, and reflection. InteRecAgent enables traditional recommender systems, such as those ID-based matrix factorization models, to become interactive systems with a natural language interface through the integration of LLMs. Experimental results on several public datasets show that InteRecAgent achieves satisfying performance as a conversational recommender system, outperforming general-purpose LLMs. The source code of InteRecAgent is released at https://aka.ms/recagent.
Securing Recommender System via Cooperative Training
Wang, Qingyang, Wu, Chenwang, Lian, Defu, Chen, Enhong
Recommender systems are often susceptible to well-crafted fake profiles, leading to biased recommendations. Among existing defense methods, data-processing-based methods inevitably exclude normal samples, while model-based methods struggle to enjoy both generalization and robustness. To this end, we suggest integrating data processing and the robust model to propose a general framework, Triple Cooperative Defense (TCD), which employs three cooperative models that mutually enhance data and thereby improve recommendation robustness. Furthermore, Considering that existing attacks struggle to balance bi-level optimization and efficiency, we revisit poisoning attacks in recommender systems and introduce an efficient attack strategy, Co-training Attack (Co-Attack), which cooperatively optimizes the attack optimization and model training, considering the bi-level setting while maintaining attack efficiency. Moreover, we reveal a potential reason for the insufficient threat of existing attacks is their default assumption of optimizing attacks in undefended scenarios. This overly optimistic setting limits the potential of attacks. Consequently, we put forth a Game-based Co-training Attack (GCoAttack), which frames the proposed CoAttack and TCD as a game-theoretic process, thoroughly exploring CoAttack's attack potential in the cooperative training of attack and defense. Extensive experiments on three real datasets demonstrate TCD's superiority in enhancing model robustness. Additionally, we verify that the two proposed attack strategies significantly outperform existing attacks, with game-based GCoAttack posing a greater poisoning threat than CoAttack.
Model Stealing Attack against Recommender System
Zhu, Zhihao, Fan, Rui, Wu, Chenwang, Yang, Yi, Lian, Defu, Chen, Enhong
Recent studies have demonstrated the vulnerability of recommender systems to data privacy attacks. However, research on the threat to model privacy in recommender systems, such as model stealing attacks, is still in its infancy. Some adversarial attacks have achieved model stealing attacks against recommender systems, to some extent, by collecting abundant training data of the target model (target data) or making a mass of queries. In this paper, we constrain the volume of available target data and queries and utilize auxiliary data, which shares the item set with the target data, to promote model stealing attacks. Although the target model treats target and auxiliary data differently, their similar behavior patterns allow them to be fused using an attention mechanism to assist attacks. Besides, we design stealing functions to effectively extract the recommendation list obtained by querying the target model. Experimental results show that the proposed methods are applicable to most recommender systems and various scenarios and exhibit excellent attack performance on multiple datasets.
Model Stealing Attack against Graph Classification with Authenticity, Uncertainty and Diversity
Zhu, Zhihao, Wu, Chenwang, Fan, Rui, Yang, Yi, Lian, Defu, Chen, Enhong
Recent research demonstrates that GNNs are vulnerable to the model stealing attack, a nefarious endeavor geared towards duplicating the target model via query permissions. However, they mainly focus on node classification tasks, neglecting the potential threats entailed within the domain of graph classification tasks. Furthermore, their practicality is questionable due to unreasonable assumptions, specifically concerning the large data requirements and extensive model knowledge. To this end, we advocate following strict settings with limited real data and hard-label awareness to generate synthetic data, thereby facilitating the stealing of the target model. Specifically, following important data generation principles, we introduce three model stealing attacks to adapt to different actual scenarios: MSA-AU is inspired by active learning and emphasizes the uncertainty to enhance query value of generated samples; MSA-AD introduces diversity based on Mixup augmentation strategy to alleviate the query inefficiency issue caused by over-similar samples generated by MSA-AU; MSA-AUD combines the above two strategies to seamlessly integrate the authenticity, uncertainty, and diversity of the generated samples. Finally, extensive experiments consistently demonstrate the superiority of the proposed methods in terms of concealment, query efficiency, and stealing performance.
Invariant Representation Learning via Decoupling Style and Spurious Features
Li, Ruimeng, Pu, Yuanhao, Li, Zhaoyi, Xie, Hong, Lian, Defu
This paper considers the out-of-distribution (OOD) generalization problem under the setting that both style distribution shift and spurious features exist and domain labels are missing. This setting frequently arises in real-world applications and is underlooked because previous approaches mainly handle either of these two factors. The critical challenge is decoupling style and spurious features in the absence of domain labels. To address this challenge, we first propose a structural causal model (SCM) for the image generation process, which captures both style distribution shift and spurious features. The proposed SCM enables us to design a new framework called IRSS, which can gradually separate style distribution and spurious features from images by introducing adversarial neural networks and multi-environment optimization, thus achieving OOD generalization. Moreover, it does not require additional supervision (e.g., domain labels) other than the images and their corresponding labels. Experiments on benchmark datasets demonstrate that IRSS outperforms traditional OOD methods and solves the problem of Invariant risk minimization (IRM) degradation, enabling the extraction of invariant features under distribution shift.
RecExplainer: Aligning Large Language Models for Recommendation Model Interpretability
Lei, Yuxuan, Lian, Jianxun, Yao, Jing, Huang, Xu, Lian, Defu, Xie, Xing
Recommender systems are widely used in various online services, with embedding-based models being particularly popular due to their expressiveness in representing complex signals. However, these models often lack interpretability, making them less reliable and transparent for both users and developers. With the emergence of large language models (LLMs), we find that their capabilities in language expression, knowledge-aware reasoning, and instruction following are exceptionally powerful. Based on this, we propose a new model interpretation approach for recommender systems, by using LLMs as surrogate models and learn to mimic and comprehend target recommender models. Specifically, we introduce three alignment methods: behavior alignment, intention alignment, and hybrid alignment. Behavior alignment operates in the language space, representing user preferences and item information as text to learn the recommendation model's behavior; intention alignment works in the latent space of the recommendation model, using user and item representations to understand the model's behavior; hybrid alignment combines both language and latent spaces for alignment training. To demonstrate the effectiveness of our methods, we conduct evaluation from two perspectives: alignment effect, and explanation generation ability on three public datasets. Experimental results indicate that our approach effectively enables LLMs to comprehend the patterns of recommendation models and generate highly credible recommendation explanations.
Deep Group Interest Modeling of Full Lifelong User Behaviors for CTR Prediction
Liu, Qi, Hou, Xuyang, Jin, Haoran, Chen, jin, Wang, Zhe, Lian, Defu, Qu, Tan, Cheng, Jia, Lei, Jun
Extracting users' interests from their lifelong behavior sequence is crucial for predicting Click-Through Rate (CTR). Most current methods employ a two-stage process for efficiency: they first select historical behaviors related to the candidate item and then deduce the user's interest from this narrowed-down behavior sub-sequence. This two-stage paradigm, though effective, leads to information loss. Solely using users' lifelong click behaviors doesn't provide a complete picture of their interests, leading to suboptimal performance. In our research, we introduce the Deep Group Interest Network (DGIN), an end-to-end method to model the user's entire behavior history. This includes all post-registration actions, such as clicks, cart additions, purchases, and more, providing a nuanced user understanding. We start by grouping the full range of behaviors using a relevant key (like item_id) to enhance efficiency. This process reduces the behavior length significantly, from O(10^4) to O(10^2). To mitigate the potential loss of information due to grouping, we incorporate two categories of group attributes. Within each group, we calculate statistical information on various heterogeneous behaviors (like behavior counts) and employ self-attention mechanisms to highlight unique behavior characteristics (like behavior type). Based on this reorganized behavior data, the user's interests are derived using the Transformer technique. Additionally, we identify a subset of behaviors that share the same item_id with the candidate item from the lifelong behavior sequence. The insights from this subset reveal the user's decision-making process related to the candidate item, improving prediction accuracy. Our comprehensive evaluation, both on industrial and public datasets, validates DGIN's efficacy and efficiency.
Frequency-domain MLPs are More Effective Learners in Time Series Forecasting
Yi, Kun, Zhang, Qi, Fan, Wei, Wang, Shoujin, Wang, Pengyang, He, Hui, Lian, Defu, An, Ning, Cao, Longbing, Niu, Zhendong
Time series forecasting has played the key role in different industrial, including finance, traffic, energy, and healthcare domains. While existing literatures have designed many sophisticated architectures based on RNNs, GNNs, or Transformers, another kind of approaches based on multi-layer perceptrons (MLPs) are proposed with simple structure, low complexity, and {superior performance}. However, most MLP-based forecasting methods suffer from the point-wise mappings and information bottleneck, which largely hinders the forecasting performance. To overcome this problem, we explore a novel direction of applying MLPs in the frequency domain for time series forecasting. We investigate the learned patterns of frequency-domain MLPs and discover their two inherent characteristic benefiting forecasting, (i) global view: frequency spectrum makes MLPs own a complete view for signals and learn global dependencies more easily, and (ii) energy compaction: frequency-domain MLPs concentrate on smaller key part of frequency components with compact signal energy. Then, we propose FreTS, a simple yet effective architecture built upon Frequency-domain MLPs for Time Series forecasting. FreTS mainly involves two stages, (i) Domain Conversion, that transforms time-domain signals into complex numbers of frequency domain; (ii) Frequency Learning, that performs our redesigned MLPs for the learning of real and imaginary part of frequency components. The above stages operated on both inter-series and intra-series scales further contribute to channel-wise and time-wise dependency learning. Extensive experiments on 13 real-world benchmarks (including 7 benchmarks for short-term forecasting and 6 benchmarks for long-term forecasting) demonstrate our consistent superiority over state-of-the-art methods.
APGL4SR: A Generic Framework with Adaptive and Personalized Global Collaborative Information in Sequential Recommendation
Yin, Mingjia, Wang, Hao, Xu, Xiang, Wu, Likang, Zhao, Sirui, Guo, Wei, Liu, Yong, Tang, Ruiming, Lian, Defu, Chen, Enhong
The sequential recommendation system has been widely studied for its promising effectiveness in capturing dynamic preferences buried in users' sequential behaviors. Despite the considerable achievements, existing methods usually focus on intra-sequence modeling while overlooking exploiting global collaborative information by inter-sequence modeling, resulting in inferior recommendation performance. Therefore, previous works attempt to tackle this problem with a global collaborative item graph constructed by pre-defined rules. However, these methods neglect two crucial properties when capturing global collaborative information, i.e., adaptiveness and personalization, yielding sub-optimal user representations. To this end, we propose a graph-driven framework, named Adaptive and Personalized Graph Learning for Sequential Recommendation (APGL4SR), that incorporates adaptive and personalized global collaborative information into sequential recommendation systems. Specifically, we first learn an adaptive global graph among all items and capture global collaborative information with it in a self-supervised fashion, whose computational burden can be further alleviated by the proposed SVD-based accelerator. Furthermore, based on the graph, we propose to extract and utilize personalized item correlations in the form of relative positional encoding, which is a highly compatible manner of personalizing the utilization of global collaborative information. Finally, the entire framework is optimized in a multi-task learning paradigm, thus each part of APGL4SR can be mutually reinforced. As a generic framework, APGL4SR can outperform other baselines with significant margins. The code is available at https://github.com/Graph-Team/APGL4SR.