Goto

Collaborating Authors

 Li, Zhoujun


Know What I don't Know: Handling Ambiguous and Unanswerable Questions for Text-to-SQL

arXiv.org Artificial Intelligence

The task of text-to-SQL aims to convert a natural language question into its corresponding SQL query within the context of relational tables. Existing text-to-SQL parsers generate a "plausible" SQL query for an arbitrary user question, thereby failing to correctly handle problematic user questions. To formalize this problem, we conduct a preliminary study on the observed ambiguous and unanswerable cases in text-to-SQL and summarize them into 6 feature categories. Correspondingly, we identify the causes behind each category and propose requirements for handling ambiguous and unanswerable questions. Following this study, we propose a simple yet effective counterfactual example generation approach that automatically produces ambiguous and unanswerable text-to-SQL examples. Furthermore, we propose a weakly supervised DTE (Detecting-Then-Explaining) model for error detection, localization, and explanation. Experimental results show that our model achieves the best result on both real-world examples and generated examples compared with various baselines. We release our data and code at: \href{https://github.com/wbbeyourself/DTE}{https://github.com/wbbeyourself/DTE}.


QURG: Question Rewriting Guided Context-Dependent Text-to-SQL Semantic Parsing

arXiv.org Artificial Intelligence

Context-dependent Text-to-SQL aims to translate multi-turn natural language questions into SQL queries. Despite various methods have exploited context-dependence information implicitly for contextual SQL parsing, there are few attempts to explicitly address the dependencies between current question and question context. This paper presents QURG, a novel Question Rewriting Guided approach to help the models achieve adequate contextual understanding. Specifically, we first train a question rewriting model to complete the current question based on question context, and convert them into a rewriting edit matrix. We further design a two-stream matrix encoder to jointly model the rewriting relations between question and context, and the schema linking relations between natural language and structured schema. Experimental results show that QURG significantly improves the performances on two large-scale context-dependent datasets SParC and CoSQL, especially for hard and long-turn questions.


Modeling Paragraph-Level Vision-Language Semantic Alignment for Multi-Modal Summarization

arXiv.org Artificial Intelligence

Most current multi-modal summarization methods follow a cascaded manner, where an off-the-shelf object detector is first used to extract visual features, then these features are fused with language representations to generate the summary with an encoder-decoder model. The cascaded way cannot capture the semantic alignments between images and paragraphs, which are crucial to a precise summary. In this paper, we propose ViL-Sum to jointly model paragraph-level \textbf{Vi}sion-\textbf{L}anguage Semantic Alignment and Multi-Modal \textbf{Sum}marization. The core of ViL-Sum is a joint multi-modal encoder with two well-designed tasks, image reordering and image selection. The joint multi-modal encoder captures the interactions between modalities, where the reordering task guides the model to learn paragraph-level semantic alignment and the selection task guides the model to selected summary-related images in the final summary. Experimental results show that our proposed ViL-Sum significantly outperforms current state-of-the-art methods. In further analysis, we find that two well-designed tasks and joint multi-modal encoder can effectively guide the model to learn reasonable paragraphs-images and summary-images relations.


GanLM: Encoder-Decoder Pre-training with an Auxiliary Discriminator

arXiv.org Artificial Intelligence

Pre-trained models have achieved remarkable success in natural language processing (NLP). However, existing pre-training methods underutilize the benefits of language understanding for generation. Inspired by the idea of Generative Adversarial Networks (GANs), we propose a GAN-style model for encoder-decoder pre-training by introducing an auxiliary discriminator, unifying the ability of language understanding and generation in a single model. Our model, named as GanLM, is trained with two pre-training objectives: replaced token detection and replaced token denoising. Specifically, given masked source sentences, the generator outputs the target distribution and the discriminator predicts whether the target sampled tokens from distribution are incorrect. The target sentence is replaced with misclassified tokens to construct noisy previous context, which is used to generate the gold sentence. In general, both tasks improve the ability of language understanding and generation by selectively using the denoising data. Extensive experiments in language generation benchmarks show that GanLM with the powerful language understanding capability outperforms various strong pre-trained language models (PLMs) and achieves state-of-the-art performance.


Unleashing Infinite-Length Input Capacity for Large-scale Language Models with Self-Controlled Memory System

arXiv.org Artificial Intelligence

Large-scale Language Models (LLMs) are constrained by their inability to process lengthy inputs. To address this limitation, we propose the Self-Controlled Memory (SCM) system to unleash infinite-length input capacity for large-scale language models. Our SCM system is composed of three key modules: the language model agent, the memory stream, and the memory controller. The language model agent iteratively processes ultra-long inputs and stores all historical information in the memory stream. The memory controller provides the agent with both long-term memory (archived memory) and short-term memory (flash memory) to generate precise and coherent responses. The controller determines which memories from archived memory should be activated and how to incorporate them into the model input. Our SCM system can be integrated with any LLMs to enable them to process ultra-long texts without any modification or fine-tuning. Experimental results show that our SCM system enables LLMs, which are not optimized for multi-turn dialogue, to achieve multi-turn dialogue capabilities that are comparable to ChatGPT, and to outperform ChatGPT in scenarios involving ultra-long document summarization or long-term conversations. Additionally, we will supply a test set, which covers common long-text input scenarios, for evaluating the abilities of LLMs in processing long documents.~\footnote{Working in progress.}\footnote{\url{https://github.com/wbbeyourself/SCM4LLMs}}


Retrieval-Augmented Classification with Decoupled Representation

arXiv.org Artificial Intelligence

Retrieval augmented methods have shown promising results in various classification tasks. However, existing methods focus on retrieving extra context to enrich the input, which is noise sensitive and non-expandable. In this paper, following this line, we propose a $k$-nearest-neighbor (KNN) -based method for retrieval augmented classifications, which interpolates the predicted label distribution with retrieved instances' label distributions. Different from the standard KNN process, we propose a decoupling mechanism as we find that shared representation for classification and retrieval hurts performance and leads to training instability. We evaluate our method on a wide range of classification datasets. Experimental results demonstrate the effectiveness and robustness of our proposed method. We also conduct extra experiments to analyze the contributions of different components in our model.\footnote{\url{https://github.com/xnliang98/knn-cls-w-decoupling}}


LogLG: Weakly Supervised Log Anomaly Detection via Log-Event Graph Construction

arXiv.org Artificial Intelligence

Fully supervised log anomaly detection methods suffer the heavy burden of annotating massive unlabeled log data. Recently, many semi-supervised methods have been proposed to reduce annotation costs with the help of parsed templates. However, these methods consider each keyword independently, which disregards the correlation between keywords and the contextual relationships among log sequences. In this paper, we propose a novel weakly supervised log anomaly detection framework, named LogLG, to explore the semantic connections among keywords from sequences. Specifically, we design an end-to-end iterative process, where the keywords of unlabeled logs are first extracted to construct a log-event graph. Then, we build a subgraph annotator to generate pseudo labels for unlabeled log sequences. To ameliorate the annotation quality, we adopt a self-supervised task to pre-train a subgraph annotator. After that, a detection model is trained with the generated pseudo labels. Conditioned on the classification results, we re-extract the keywords from the log sequences and update the log-event graph for the next iteration. Experiments on five benchmarks validate the effectiveness of LogLG for detecting anomalies on unlabeled log data and demonstrate that LogLG, as the state-of-the-art weakly supervised method, achieves significant performance improvements compared to existing methods.


Character, Word, or Both? Revisiting the Segmentation Granularity for Chinese Pre-trained Language Models

arXiv.org Artificial Intelligence

Pretrained language models (PLMs) have shown marvelous improvements across various NLP tasks. Most Chinese PLMs simply treat an input text as a sequence of characters, and completely ignore word information. Although Whole Word Masking can alleviate this, the semantics in words is still not well represented. In this paper, we revisit the segmentation granularity of Chinese PLMs. We propose a mixed-granularity Chinese BERT (MigBERT) by considering both characters and words. To achieve this, we design objective functions for learning both character and word-level representations. We conduct extensive experiments on various Chinese NLP tasks to evaluate existing PLMs as well as the proposed MigBERT. Experimental results show that MigBERT achieves new SOTA performance on all these tasks. Further analysis demonstrates that words are semantically richer than characters. More interestingly, we show that MigBERT also works with Japanese. Our code and model have been released here~\footnote{https://github.com/xnliang98/MigBERT}.


Multi-task Transformer with Relation-attention and Type-attention for Named Entity Recognition

arXiv.org Artificial Intelligence

Named entity recognition (NER) is an important research problem in natural language processing. There are three types of NER tasks, including flat, nested and discontinuous entity recognition. Most previous sequential labeling models are task-specific, while recent years have witnessed the rising of generative models due to the advantage of unifying all NER tasks into the seq2seq model framework. Although achieving promising performance, our pilot studies demonstrate that existing generative models are ineffective at detecting entity boundaries and estimating entity types. This paper proposes a multi-task Transformer, which incorporates an entity boundary detection task into the named entity recognition task. More concretely, we achieve entity boundary detection by classifying the relations between tokens within the sentence. To improve the accuracy of entity-type mapping during decoding, we adopt an external knowledge base to calculate the prior entity-type distributions and then incorporate the information into the model via the self and cross-attention mechanisms. We perform experiments on an extensive set of NER benchmarks, including two flat, three nested, and three discontinuous NER datasets. Experimental results show that our approach considerably improves the generative NER model's performance.


Enhancing Dialogue Summarization with Topic-Aware Global- and Local- Level Centrality

arXiv.org Artificial Intelligence

Dialogue summarization aims to condense a given dialogue into a simple and focused summary text. Typically, both the roles' viewpoints and conversational topics change in the dialogue stream. Thus how to effectively handle the shifting topics and select the most salient utterance becomes one of the major challenges of this task. In this paper, we propose a novel topic-aware Global-Local Centrality (GLC) model to help select the salient context from all sub-topics. The centralities are constructed at both the global and local levels. The global one aims to identify vital sub-topics in the dialogue and the local one aims to select the most important context in each sub-topic. Specifically, the GLC collects sub-topic based on the utterance representations. And each utterance is aligned with one sub-topic. Based on the sub-topics, the GLC calculates global- and local-level centralities. Finally, we combine the two to guide the model to capture both salient context and sub-topics when generating summaries. Experimental results show that our model outperforms strong baselines on three public dialogue summarization datasets: CSDS, MC, and SAMSUM. Further analysis demonstrates that our GLC can exactly identify vital contents from sub-topics.~\footnote{\url{https://github.com/xnliang98/bart-glc}}