Li, Zhoujun
MAC-SQL: A Multi-Agent Collaborative Framework for Text-to-SQL
Wang, Bing, Ren, Changyu, Yang, Jian, Liang, Xinnian, Bai, Jiaqi, Zhang, Qian-Wen, Yan, Zhao, Li, Zhoujun
Recent advancements in Text-to-SQL methods employing Large Language Models (LLMs) have demonstrated remarkable performance. Nonetheless, these approaches continue to encounter difficulties when handling extensive databases, intricate user queries, and erroneous SQL results. To tackle these challenges, we present \textsc{MAC-SQL}, a novel LLM-based multi-agent collaborative framework designed for the Text-to-SQL task. Our framework comprises three agents: the \textit{Selector}, accountable for condensing voluminous databases and preserving relevant table schemas for user questions; the \textit{Decomposer}, which disassembles complex user questions into more straightforward sub-problems and resolves them progressively; and the \textit{Refiner}, tasked with validating and refining defective SQL queries. We perform comprehensive experiments on two Text-to-SQL datasets, BIRD and Spider, achieving a state-of-the-art execution accuracy of 59.59\% on the BIRD test set. Moreover, we have open-sourced an instruction fine-tuning model, SQL-Llama, based on Code Llama 7B, in addition to an agent instruction dataset derived from training data based on BIRD and Spider. The SQL-Llama model has demonstrated encouraging results on the development sets of both BIRD and Spider. However, when compared to GPT-4, there remains a notable potential for enhancement. Our code and data are publicly available at https://github.com/wbbeyourself/MAC-SQL.
M2C: Towards Automatic Multimodal Manga Complement
Guo, Hongcheng, Wang, Boyang, Bai, Jiaqi, Liu, Jiaheng, Yang, Jian, Li, Zhoujun
Multimodal manga analysis focuses on enhancing manga understanding with visual and textual features, which has attracted considerable attention from both natural language processing and computer vision communities. Currently, most comics are hand-drawn and prone to problems such as missing pages, text contamination, and aging, resulting in missing comic text content and seriously hindering human comprehension. In other words, the Multimodal Manga Complement (M2C) task has not been investigated, which aims to handle the aforementioned issues by providing a shared semantic space for vision and language understanding. To this end, we first propose the Multimodal Manga Complement task by establishing a new M2C benchmark dataset covering two languages. First, we design a manga argumentation method called MCoT to mine event knowledge in comics with large language models. Then, an effective baseline FVP-M$^{2}$ using fine-grained visual prompts is proposed to support manga complement. Extensive experimental results show the effectiveness of FVP-M$^{2}$ method for Multimodal Mange Complement.
API-Bank: A Comprehensive Benchmark for Tool-Augmented LLMs
Li, Minghao, Zhao, Yingxiu, Yu, Bowen, Song, Feifan, Li, Hangyu, Yu, Haiyang, Li, Zhoujun, Huang, Fei, Li, Yongbin
Recent research has demonstrated that Large Language Models (LLMs) can enhance their capabilities by utilizing external tools. However, three pivotal questions remain unanswered: (1) How effective are current LLMs in utilizing tools? (2) How can we enhance LLMs' ability to utilize tools? (3) What obstacles need to be overcome to leverage tools? To address these questions, we introduce API-Bank, a groundbreaking benchmark, specifically designed for tool-augmented LLMs. For the first question, we develop a runnable evaluation system consisting of 73 API tools. We annotate 314 tool-use dialogues with 753 API calls to assess the existing LLMs' capabilities in planning, retrieving, and calling APIs. For the second question, we construct a comprehensive training set containing 1,888 tool-use dialogues from 2,138 APIs spanning 1,000 distinct domains. Using this dataset, we train Lynx, a tool-augmented LLM initialized from Alpaca. Experimental results demonstrate that GPT-3.5 exhibits improved tool utilization compared to GPT-3, while GPT-4 excels in planning. However, there is still significant potential for further improvement. Moreover, Lynx surpasses Alpaca's tool utilization performance by more than 26 pts and approaches the effectiveness of GPT-3.5. Through error analysis, we highlight the key challenges for future research in this field to answer the third question.
Multi-Stage Pre-training Enhanced by ChatGPT for Multi-Scenario Multi-Domain Dialogue Summarization
Zhou, Weixiao, Li, Gengyao, Cheng, Xianfu, Liang, Xinnian, Zhu, Junnan, Zhai, Feifei, Li, Zhoujun
Dialogue summarization involves a wide range of scenarios and domains. However, existing methods generally only apply to specific scenarios or domains. In this study, we propose a new pre-trained model specifically designed for multi-scenario multi-domain dialogue summarization. It adopts a multi-stage pre-training strategy to reduce the gap between the pre-training objective and fine-tuning objective. Specifically, we first conduct domain-aware pre-training using large-scale multi-scenario multi-domain dialogue data to enhance the adaptability of our pre-trained model. Then, we conduct task-oriented pre-training using large-scale multi-scenario multi-domain "dialogue-summary" parallel data annotated by ChatGPT to enhance the dialogue summarization ability of our pre-trained model. Experimental results on three dialogue summarization datasets from different scenarios and domains indicate that our pre-trained model significantly outperforms previous state-of-the-art models in full fine-tuning, zero-shot, and few-shot settings.
MT4CrossOIE: Multi-stage Tuning for Cross-lingual Open Information Extraction
Li, Tongliang, Wang, Zixiang, Chai, Linzheng, Yang, Jian, Bai, Jiaqi, Yin, Yuwei, Liu, Jiaheng, Guo, Hongcheng, Yang, Liqun, el-abidine, Hebboul Zine, Li, Zhoujun
Cross-lingual open information extraction aims to extract structured information from raw text across multiple languages. Previous work uses a shared cross-lingual pre-trained model to handle the different languages but underuses the potential of the language-specific representation. In this paper, we propose an effective multi-stage tuning framework called MT4CrossIE, designed for enhancing cross-lingual open information extraction by injecting language-specific knowledge into the shared model. Specifically, the cross-lingual pre-trained model is first tuned in a shared semantic space (e.g., embedding matrix) in the fixed encoder and then other components are optimized in the second stage. After enough training, we freeze the pre-trained model and tune the multiple extra low-rank language-specific modules using mixture-of-LoRAs for model-based cross-lingual transfer. In addition, we leverage two-stage prompting to encourage the large language model (LLM) to annotate the multi-lingual raw data for data-based cross-lingual transfer. The model is trained with multi-lingual objectives on our proposed dataset OpenIE4++ by combing the model-based and data-based transfer techniques. Experimental results on various benchmarks emphasize the importance of aggregating multiple plug-in-and-play language-specific modules and demonstrate the effectiveness of MT4CrossIE in cross-lingual OIE\footnote{\url{https://github.com/CSJianYang/Multilingual-Multimodal-NLP}}.
OWL: A Large Language Model for IT Operations
Guo, Hongcheng, Yang, Jian, Liu, Jiaheng, Yang, Liqun, Chai, Linzheng, Bai, Jiaqi, Peng, Junran, Hu, Xiaorong, Chen, Chao, Zhang, Dongfeng, Shi, Xu, Zheng, Tieqiao, Zheng, Liangfan, Zhang, Bo, Xu, Ke, Li, Zhoujun
With the rapid development of IT operations, it has become increasingly crucial to efficiently manage and analyze large volumes of data for practical applications. The techniques of Natural Language Processing (NLP) have shown remarkable capabilities for various tasks, including named entity recognition, machine translation and dialogue systems. Recently, Large Language Models (LLMs) have achieved significant improvements across various NLP downstream tasks. However, there is a lack of specialized LLMs for IT operations. In this paper, we introduce the Owl, a large language model trained on our collected Owl-Instruct dataset with a wide range of IT-related information, where the mixture-of-adapter strategy is proposed to improve the parameter-efficient tuning across different domains or tasks. Furthermore, we evaluate the performance of our Owl on the Owl-Bench established by us and open IT-related benchmarks. Owl demonstrates superior performance results on IT tasks, which outperforms existing models by significant margins. Moreover, we hope that the findings of our work will provide more insights to revolutionize the techniques of IT operations with specialized LLMs.
Unleashing Potential of Evidence in Knowledge-Intensive Dialogue Generation
Wu, Xianjie, Yang, Jian, Li, Tongliang, Liang, Di, Zhang, Shiwei, Du, Yiyang, Li, Zhoujun
Incorporating external knowledge into dialogue generation (KIDG) is crucial for improving the correctness of response, where evidence fragments serve as knowledgeable snippets supporting the factual dialogue replies. However, introducing irrelevant content often adversely impacts reply quality and easily leads to hallucinated responses. Prior work on evidence retrieval and integration in dialogue systems falls short of fully leveraging existing evidence since the model fails to locate useful fragments accurately and overlooks hidden evidence labels within the KIDG dataset. To fully Unleash the potential of evidence, we propose a framework to effectively incorporate Evidence in knowledge-Intensive Dialogue Generation (u-EIDG). Specifically, we introduce an automatic evidence generation framework that harnesses the power of Large Language Models (LLMs) to mine reliable evidence veracity labels from unlabeled data. By utilizing these evidence labels, we train a reliable evidence indicator to effectively identify relevant evidence from retrieved passages. Furthermore, we propose an evidence-augmented generator with an evidence-focused attention mechanism, which allows the model to concentrate on evidenced segments. Experimental results on MultiDoc2Dial demonstrate the efficacy of evidential label augmentation and refined attention mechanisms in improving model performance. Further analysis confirms that the proposed method outperforms other baselines (+3~+5 points) regarding coherence and factual consistency.
mCL-NER: Cross-Lingual Named Entity Recognition via Multi-view Contrastive Learning
Mo, Ying, Yang, Jian, Liu, Jiahao, Wang, Qifan, Chen, Ruoyu, Wang, Jingang, Li, Zhoujun
Cross-lingual named entity recognition (CrossNER) faces challenges stemming from uneven performance due to the scarcity of multilingual corpora, especially for non-English data. While prior efforts mainly focus on data-driven transfer methods, a significant aspect that has not been fully explored is aligning both semantic and token-level representations across diverse languages. In this paper, we propose Multi-view Contrastive Learning for Cross-lingual Named Entity Recognition (mCL-NER). Specifically, we reframe the CrossNER task into a problem of recognizing relationships between pairs of tokens. This approach taps into the inherent contextual nuances of token-to-token connections within entities, allowing us to align representations across different languages. A multi-view contrastive learning framework is introduced to encompass semantic contrasts between source, codeswitched, and target sentences, as well as contrasts among token-to-token relations. By enforcing agreement within both semantic and relational spaces, we minimize the gap between source sentences and their counterparts of both codeswitched and target sentences. This alignment extends to the relationships between diverse tokens, enhancing the projection of entities across languages. We further augment CrossNER by combining self-training with labeled source data and unlabeled target data. Our experiments on the XTREME benchmark, spanning 40 languages, demonstrate the superiority of mCL-NER over prior data-driven and model-based approaches. It achieves a substantial increase of nearly +2.0 $F_1$ scores across a broad spectrum and establishes itself as the new state-of-the-art performer.
GripRank: Bridging the Gap between Retrieval and Generation via the Generative Knowledge Improved Passage Ranking
Bai, Jiaqi, Guo, Hongcheng, Liu, Jiaheng, Yang, Jian, Liang, Xinnian, Yan, Zhao, Li, Zhoujun
Retrieval-enhanced text generation has shown remarkable progress on knowledge-intensive language tasks, such as open-domain question answering and knowledge-enhanced dialogue generation, by leveraging passages retrieved from a large passage corpus for delivering a proper answer given the input query. However, the retrieved passages are not ideal for guiding answer generation because of the discrepancy between retrieval and generation, i.e., the candidate passages are all treated equally during the retrieval procedure without considering their potential to generate a proper answer. This discrepancy makes a passage retriever deliver a sub-optimal collection of candidate passages to generate the answer. In this paper, we propose the GeneRative Knowledge Improved Passage Ranking (GripRank) approach, addressing the above challenge by distilling knowledge from a generative passage estimator (GPE) to a passage ranker, where the GPE is a generative language model used to measure how likely the candidate passages can generate the proper answer. We realize the distillation procedure by teaching the passage ranker learning to rank the passages ordered by the GPE. Furthermore, we improve the distillation quality by devising a curriculum knowledge distillation mechanism, which allows the knowledge provided by the GPE can be progressively distilled to the ranker through an easy-to-hard curriculum, enabling the passage ranker to correctly recognize the provenance of the answer from many plausible candidates. We conduct extensive experiments on four datasets across three knowledge-intensive language tasks. Experimental results show advantages over the state-of-the-art methods for both passage ranking and answer generation on the KILT benchmark.
KnowPrefix-Tuning: A Two-Stage Prefix-Tuning Framework for Knowledge-Grounded Dialogue Generation
Bai, Jiaqi, Yan, Zhao, Yang, Jian, Liang, Xinnian, Guo, Hongcheng, Li, Zhoujun
Existing knowledge-grounded conversation systems generate responses typically in a retrieve-then-generate manner. They require a large knowledge base and a strong knowledge retrieval component, which is time- and resource-consuming. In this paper, we address the challenge by leveraging the inherent knowledge encoded in the pre-trained language models (PLMs). We propose Knowledgeable Prefix Tuning (KnowPrefix-Tuning), a two-stage tuning framework, bypassing the retrieval process in a knowledge-grounded conversation system by injecting prior knowledge into the lightweight knowledge prefix. The knowledge prefix is a sequence of continuous knowledge-specific vectors that can be learned during training. In addition, we propose a novel interactive re-parameterization mechanism that allows the prefix to interact fully with the PLM during the optimization of response generation. Experimental results demonstrate that KnowPrefix-Tuning outperforms fine-tuning and other lightweight tuning approaches, and performs comparably with strong retrieval-based baselines while being $3\times$ faster during inference.