Not enough data to create a plot.
Try a different view from the menu above.
Li, Zhoujun
Neural Response Generation With Dynamic Vocabularies
Wu, Yu (Beihang University) | Wu, Wei (Microsoft Research) | Yang, Dejian (Beihang University) | Xu, Can (Microsoft Research) | Li, Zhoujun (Beihang University)
We study response generation for open domain conversation in chatbots. Existing methods assume that words in responses are generated from an identical vocabulary regardless of their inputs, which not only makes them vulnerable to generic patterns and irrelevant noise, but also causes a high cost in decoding. We propose a dynamic vocabulary sequence-to-sequence (DVS2S) model which allows each input to possess their own vocabulary in decoding. In training, vocabulary construction and response generation are jointly learned by maximizing a lower bound of the true objective with a Monte Carlo sampling method. In inference, the model dynamically allocates a small vocabulary for an input with the word prediction model, and conducts decoding only with the small vocabulary. Because of the dynamic vocabulary mechanism, DVS2S eludes many generic patterns and irrelevant words in generation, and enjoys efficient decoding at the same time. Experimental results on both automatic metrics and human annotations show that DVS2S can significantly outperform state-of-the-art methods in terms of response quality, but only requires 60% decoding time compared to the most efficient baseline.
Knowledge Enhanced Hybrid Neural Network for Text Matching
Wu, Yu (Beihang University) | Wu, Wei (Microsoft Research) | Xu, Can (Microsoft Research) | Li, Zhoujun (Beihang University)
Long text brings a big challenge to neural network based text matching approaches due to their complicated structures. To tackle the challenge, we propose a knowledge enhanced hybrid neural network (KEHNN) that leverages prior knowledge to identify useful information and filter out noise in long text and performs matching from multiple perspectives. The model fuses prior knowledge into word representations by knowledge gates and establishes three matching channels with words, sequential structures of text given by Gated Recurrent Units (GRUs), and knowledge enhanced representations. The three channels are processed by a convolutional neural network to generate high level features for matching, and the features are synthesized as a matching score by a multilayer perceptron. In this paper, we focus on exploring the use of taxonomy knowledge for text matching. Evaluation results from extensive experiments on public data sets of question answering and conversation show that KEHNN can significantly outperform state-of-the-art matching models and particularly improve matching accuracy on pairs with long text.
Learning Social Image Embedding with Deep Multimodal Attention Networks
Huang, Feiran, Zhang, Xiaoming, Li, Zhoujun, Mei, Tao, He, Yueying, Zhao, Zhonghua
Learning social media data embedding by deep models has attracted extensive research interest as well as boomed a lot of applications, such as link prediction, classification, and cross-modal search. However, for social images which contain both link information and multimodal contents (e.g., text description, and visual content), simply employing the embedding learnt from network structure or data content results in sub-optimal social image representation. In this paper, we propose a novel social image embedding approach called Deep Multimodal Attention Networks (DMAN), which employs a deep model to jointly embed multimodal contents and link information. Specifically, to effectively capture the correlations between multimodal contents, we propose a multimodal attention network to encode the fine-granularity relation between image regions and textual words. To leverage the network structure for embedding learning, a novel Siamese-Triplet neural network is proposed to model the links among images. With the joint deep model, the learnt embedding can capture both the multimodal contents and the nonlinear network information. Extensive experiments are conducted to investigate the effectiveness of our approach in the applications of multi-label classification and cross-modal search. Compared to state-of-the-art image embeddings, our proposed DMAN achieves significant improvement in the tasks of multi-label classification and cross-modal search.
Jointly Extracting Relations with Class Ties via Effective Deep Ranking
Ye, Hai, Chao, Wenhan, Luo, Zhunchen, Li, Zhoujun
Connections between relations in relation extraction, which we call class ties, are common. In distantly supervised scenario, one entity tuple may have multiple relation facts. Exploiting class ties between relations of one entity tuple will be promising for distantly supervised relation extraction. However, previous models are not effective or ignore to model this property. In this work, to effectively leverage class ties, we propose to make joint relation extraction with a unified model that integrates convolutional neural network (CNN) with a general pairwise ranking framework, in which three novel ranking loss functions are introduced. Additionally, an effective method is presented to relieve the severe class imbalance problem from NR (not relation) for model training. Experiments on a widely used dataset show that leveraging class ties will enhance extraction and demonstrate the effectiveness of our model to learn class ties. Our model outperforms the baselines significantly, achieving state-of-the-art performance.
Building Task-Oriented Dialogue Systems for Online Shopping
Yan, Zhao (Beihang University) | Duan, Nan (Microsoft Research) | Chen, Peng (Microsoft) | Zhou, Ming (Microsoft Research) | Zhou, Jianshe (Capital Normal University) | Li, Zhoujun (Beihang University)
We present a general solution towards building task-oriented dialogue systems for online shopping, aiming to assist online customers in completing various purchase-related tasks, such as searching products and answering questions, in a natural language conversation manner. As a pioneering work, we show what & how existing NLP techniques, data resources, and crowdsourcing can be leveraged to build such task-oriented dialogue systems for E-commerce usage. To demonstrate its effectiveness, we integrate our system into a mobile online shopping app. To the best of our knowledge, this is the first time that an AI bot in Chinese is practically used in online shopping scenario with millions of real consumers. Interesting and insightful observations are shown in the experimental part, based on the analysis of human-bot conversation log. Several current challenges are also pointed out as our future directions.
Aggregating Inter-Sentence Information to Enhance Relation Extraction
Zheng, Hao (Beihang University) | Li, Zhoujun (Beihang University) | Wang, Senzhang (Beihang University) | Yan, Zhao ( Beihang University ) | Zhou, Jianshe ( Capital Normal University )
Previous work for relation extraction from free text is mainly based on intra-sentence information. As relations might be mentioned across sentences, inter-sentence information can be leveraged to improve distantly supervised relation extraction. To effectively exploit inter-sentence information, we propose a ranking based approach, which first learns a scoring function based on a listwise learning-to-rank model and then uses it for multi-label relation extraction. Experimental results verify the effectiveness of our method for aggregating information across sentences. Additionally, to further improve the ranking of high-quality extractions, we propose an effective method to rank relations from different entity pairs. This method can be easily integrated into our overall relation extraction framework, and boosts the precision significantly.
Improving Recommendation of Tail Tags for Questions in Community Question Answering
Wu, Yu (Beihang University) | Wu, Wei (Microsoft Research) | Li, Zhoujun (Beihang University) | Zhou, Ming (Microsoft Research)
We study tag recommendation for questions in community question answering (CQA). Tags represent the semantic summarization of questions are useful for navigation and expert finding in CQA and can facilitate content consumption such as searching and mining in these web sites. The task is challenging, as both questions and tags are short and a large fraction of tags are tail tags which occur very infrequently. To solve these problems, we propose matching questions and tags not only by themselves, but also by similar questions and similar tags. The idea is then formalized as a model in which we calculate question-tag similarity using a linear combination of similarity with similar questions and tags weighted by tag importance.Question similarity, tag similarity, and tag importance are learned in a supervised random walk framework by fusing multiple features. Our model thus can not only accurately identify question-tag similarity for head tags, but also improve the accuracy of recommendation of tail tags. Experimental results show that the proposed method significantly outperforms state-of-the-art methods on tag recommendation for questions. Particularly, it improves tail tag recommendation accuracy by a large margin.
Burst Time Prediction in Cascades
Wang, Senzhang (Beihang University) | Yan, Zhao (Beihang Univerisity) | Hu, Xia (Arizona State University) | Yu, Philip S. (University of Illinois at Chicago) | Li, Zhoujun (Beihang University)
Studying the bursty nature of cascades in social media is practically important in many applications such as product sales prediction, disaster relief, and stock market prediction. Although the cascade volume prediction has been extensively studied, how to predict when a burst will come remains an open problem. It is challenging to predict the time of the burst due to the ``quick rise and fall'' pattern and the diverse time spans of the cascades. To this end, this paper proposes a classification based approach for burst time prediction by utilizing and modeling rich knowledge in information diffusion. Particularly, we first propose a time window based approach to predict in which time window the burst will appear. This paves the way to transform the time prediction task to a classification problem. To address the challenge that the original time series data of the cascade popularity only are not sufficient for predicting cascades with diverse magnitudes and time spans, we explore rich information diffusion related knowledge and model them in a scale-independent manner. Extensive experiments on a Sina Weibo reposting dataset demonstrate the superior performance of the proposed approach in accurately predicting the burst time of posts.
Mining Query Subtopics from Questions in Community Question Answering
Wu, Yu (Beihang University) | Wu, Wei (Microsoft Reasearch Asia) | Li, Zhoujun (Beihang University) | Zhou, Ming (Microsoft Reasearch Asia)
This paper proposes mining query subtopics from questions in community question answering (CQA). The subtopics are represented as a number of clusters of questions with keywords summarizing the clusters. The task is unique in that the subtopics from questions can not only facilitate user browsing in CQA search, but also describe aspects of queries from a question-answering perspective. The challenges of the task include how to group semantically similar questions and how to find keywords capable of summarizing the clusters. We formulate the subtopic mining task as a non-negative matrix factorization (NMF) problem and further extend the model of NMF to incorporate question similarity estimated from metadata of CQA into learning. Compared with existing methods, our method can jointly optimize question clustering and keyword extraction and encourage the former task to enhance the latter. Experimental results on large scale real world CQA datasets show that the proposed method significantly outperforms the existing methods in terms of keyword extraction, while achieving a comparable performance to the state-of-the-art methods for question clustering.
From Interest to Function: Location Estimation in Social Media
Chen, Yan (Beihang University) | Zhao, Jichang (Beihang University) | Hu, Xia (Arizona State University) | Zhang, Xiaoming (Beihang University) | Li, Zhoujun (Beihang University) | Chua, Tat-Seng (National University of Singapore)
Recent years have witnessed the tremendous development of social media, which attracts a vast number of Internet users. The high-dimension content generated by these users provides an unique opportunity to understand their behavior deeply. As one of the most fundamental topics, location estimation attracts more and more research efforts. Different from the previous literature, we find that user's location is strongly related to user interest. Based on this, we first build a detection model to mine user interest from short text. We then establish the mapping between location function and user interest before presenting an efficient framework to predict the user's location with convincing fidelity. Thorough evaluations and comparisons on an authentic data set show that our proposed model significantly outperforms the state-of-the-arts approaches. Moreover, the high efficiency of our model also guarantees its applicability in real-world scenarios.