Not enough data to create a plot.
Try a different view from the menu above.
Li, Yubo
Firm or Fickle? Evaluating Large Language Models Consistency in Sequential Interactions
Li, Yubo, Miao, Yidi, Ding, Xueying, Krishnan, Ramayya, Padman, Rema
Large Language Models (LLMs) have shown remarkable capabilities across various tasks, but their deployment in high-stake domains requires consistent performance across multiple interaction rounds. This paper introduces a comprehensive framework for evaluating and improving LLM response consistency, making three key contributions. First, we propose a novel Position-Weighted Consistency (PWC) score that captures both the importance of early-stage stability and recovery patterns in multi-turn interactions. Second, we present a carefully curated benchmark dataset spanning diverse domains and difficulty levels, specifically designed to evaluate LLM consistency under various challenging follow-up scenarios. Third, we introduce Confidence-Aware Response Generation (CARG), a framework that significantly improves response stability by incorporating model confidence signals into the generation process. Empirical results demonstrate that CARG significantly improves response stability without sacrificing accuracy, underscoring its potential for reliable LLM deployment in critical applications.
No Black Box Anymore: Demystifying Clinical Predictive Modeling with Temporal-Feature Cross Attention Mechanism
Li, Yubo, Yao, Xinyu, Padman, Rema
Despite the outstanding performance of deep learning models in clinical prediction tasks, explainability remains a significant challenge. Inspired by transformer architectures, we introduce the Temporal-Feature Cross Attention Mechanism (TFCAM), a novel deep learning framework designed to capture dynamic interactions among clinical features across time, enhancing both predictive accuracy and interpretability. In an experiment with 1,422 patients with Chronic Kidney Disease, predicting progression to End-Stage Renal Disease, TFCAM outperformed LSTM and RETAIN baselines, achieving an AUROC of 0.95 and an F1-score of 0.69. Beyond performance gains, TFCAM provides multi-level explainability by identifying critical temporal periods, ranking feature importance, and quantifying how features influence each other across time before affecting predictions. Our approach addresses the "black box" limitations of deep learning in healthcare, offering clinicians transparent insights into disease progression mechanisms while maintaining state-of-the-art predictive performance.
Application of machine learning algorithm in temperature field reconstruction
He, Qianyu, Sun, Huaiwei, Li, Yubo, You, Zhiwen, Zheng, Qiming, Huang, Yinghan, Zhu, Sipeng, Wang, Fengyu
This study focuses on the stratification patterns and dynamic evolution of reservoir water temperatures, aiming to estimate and reconstruct the temperature field using limited and noisy local measurement data. Due to complex measurement environments and technical limitations, obtaining complete temperature information for reservoirs is highly challenging. Therefore, accurately reconstructing the temperature field from a small number of local data points has become a critical scientific issue. To address this, the study employs Proper Orthogonal Decomposition (POD) and sparse representation methods to reconstruct the temperature field based on temperature data from a limited number of local measurement points. The results indicate that satisfactory reconstruction can be achieved when the number of POD basis functions is set to 2 and the number of measurement points is 10. Under different water intake depths, the reconstruction errors of both POD and sparse representation methods remain stable at around 0.15, fully validating the effectiveness of these methods in reconstructing the temperature field based on limited local temperature data. Additionally, the study further explores the distribution characteristics of reconstruction errors for POD and sparse representation methods under different water level intervals, analyzing the optimal measurement point layout scheme and potential limitations of the reconstruction methods in this case. This research not only effectively reduces measurement costs and computational resource consumption but also provides a new technical approach for reservoir temperature analysis, holding significant theoretical and practical importance.
Enhancing End Stage Renal Disease Outcome Prediction: A Multi-Sourced Data-Driven Approach
Li, Yubo, Padman, Rema
Objective: To improve prediction of Chronic Kidney Disease (CKD) progression to End Stage Renal Disease (ESRD) using machine learning (ML) and deep learning (DL) models applied to an integrated clinical and claims dataset of varying observation windows, supported by explainable AI (XAI) to enhance interpretability and reduce bias. Materials and Methods: We utilized data about 10,326 CKD patients, combining their clinical and claims information from 2009 to 2018. Following data preprocessing, cohort identification, and feature engineering, we evaluated multiple statistical, ML and DL models using data extracted from five distinct observation windows. Feature importance and Shapley value analysis were employed to understand key predictors. Models were tested for robustness, clinical relevance, misclassification errors and bias issues. Results: Integrated data models outperformed those using single data sources, with the Long Short-Term Memory (LSTM) model achieving the highest AUC (0.93) and F1 score (0.65). A 24-month observation window was identified as optimal for balancing early detection and prediction accuracy. The 2021 eGFR equation improved prediction accuracy and reduced racial bias, notably for African American patients. Discussion: Improved ESRD prediction accuracy, results interpretability and bias mitigation strategies presented in this study have the potential to significantly enhance CKD and ESRD management, support targeted early interventions and reduce healthcare disparities. Conclusion: This study presents a robust framework for predicting ESRD outcomes in CKD patients, improving clinical decision-making and patient care through multi-sourced, integrated data and AI/ML methods. Future research will expand data integration and explore the application of this framework to other chronic diseases.