Li, Yi
AllSpark: Reborn Labeled Features from Unlabeled in Transformer for Semi-Supervised Semantic Segmentation
Wang, Haonan, Zhang, Qixiang, Li, Yi, Li, Xiaomeng
Semi-supervised semantic segmentation (SSSS) has been proposed to alleviate the burden of time-consuming pixel-level manual labeling, which leverages limited labeled data along with larger amounts of unlabeled data. Current state-of-the-art methods train the labeled data with ground truths and unlabeled data with pseudo labels. However, the two training flows are separate, which allows labeled data to dominate the training process, resulting in low-quality pseudo labels and, consequently, sub-optimal results. To alleviate this issue, we present AllSpark, which reborns the labeled features from unlabeled ones with the channel-wise cross-attention mechanism. We further introduce a Semantic Memory along with a Channel Semantic Grouping strategy to ensure that unlabeled features adequately represent labeled features. The AllSpark shed new light on the architecture level designs of SSSS rather than framework level, which avoids increasingly complicated training pipeline designs. It can also be regarded as a flexible bottleneck module that can be seamlessly integrated into a general transformer-based segmentation model. The proposed AllSpark outperforms existing methods across all evaluation protocols on Pascal, Cityscapes and COCO benchmarks without bells-and-whistles. Code and model weights are available at: https://github.com/xmed-lab/AllSpark.
Deep Separable Spatiotemporal Learning for Fast Dynamic Cardiac MRI
Wang, Zi, Xiao, Min, Zhou, Yirong, Wang, Chengyan, Wu, Naiming, Li, Yi, Gong, Yiwen, Chang, Shufu, Chen, Yinyin, Zhu, Liuhong, Zhou, Jianjun, Cai, Congbo, Wang, He, Guo, Di, Yang, Guang, Qu, Xiaobo
Dynamic magnetic resonance imaging (MRI) plays an indispensable role in cardiac diagnosis. To enable fast imaging, the k-space data can be undersampled but the image reconstruction poses a great challenge of high-dimensional processing. This challenge leads to necessitate extensive training data in many deep learning reconstruction methods. This work proposes a novel and efficient approach, leveraging a dimension-reduced separable learning scheme that excels even with highly limited training data. We further integrate it with spatiotemporal priors to develop a Deep Separable Spatiotemporal Learning network (DeepSSL), which unrolls an iteration process of a reconstruction model with both temporal low-rankness and spatial sparsity. Intermediate outputs are visualized to provide insights into the network's behavior and enhance its interpretability. Extensive results on cardiac cine datasets show that the proposed DeepSSL is superior to the state-of-the-art methods visually and quantitatively, while reducing the demand for training cases by up to 75%. And its preliminary adaptability to cardiac patients has been verified through experienced radiologists' and cardiologists' blind reader study. Additionally, DeepSSL also benefits for achieving the downstream task of cardiac segmentation with higher accuracy and shows robustness in prospective real-time cardiac MRI.
Spin: An Efficient Secure Computation Framework with GPU Acceleration
Jiang, Wuxuan, Song, Xiangjun, Hong, Shenbai, Zhang, Haijun, Liu, Wenxin, Zhao, Bo, Xu, Wei, Li, Yi
Accuracy and efficiency remain challenges for multi-party computation (MPC) frameworks. Spin is a GPU-accelerated MPC framework that supports multiple computation parties and a dishonest majority adversarial setup. We propose optimized protocols for non-linear functions that are critical for machine learning, as well as several novel optimizations specific to attention that is the fundamental unit of Transformer models, allowing Spin to perform non-trivial CNNs training and Transformer inference without sacrificing security. At the backend level, Spin leverages GPU, CPU, and RDMA-enabled smart network cards for acceleration. Comprehensive evaluations demonstrate that Spin can be up to $2\times$ faster than the state-of-the-art for deep neural network training. For inference on a Transformer model with 18.9 million parameters, our attention-specific optimizations enable Spin to achieve better efficiency, less communication, and better accuracy.
Exploiting Hierarchical Interactions for Protein Surface Learning
Lin, Yiqun, Pan, Liang, Li, Yi, Liu, Ziwei, Li, Xiaomeng
Predicting interactions between proteins is one of the most important yet challenging problems in structural bioinformatics. Intrinsically, potential function sites in protein surfaces are determined by both geometric and chemical features. However, existing works only consider handcrafted or individually learned chemical features from the atom type and extract geometric features independently. Here, we identify two key properties of effective protein surface learning: 1) relationship among atoms: atoms are linked with each other by covalent bonds to form biomolecules instead of appearing alone, leading to the significance of modeling the relationship among atoms in chemical feature learning. 2) hierarchical feature interaction: the neighboring residue effect validates the significance of hierarchical feature interaction among atoms and between surface points and atoms (or residues). In this paper, we present a principled framework based on deep learning techniques, namely Hierarchical Chemical and Geometric Feature Interaction Network (HCGNet), for protein surface analysis by bridging chemical and geometric features with hierarchical interactions. Extensive experiments demonstrate that our method outperforms the prior state-of-the-art method by 2.3% in site prediction task and 3.2% in interaction matching task, respectively. Our code is available at https://github.com/xmed-lab/HCGNet.
BLIVA: A Simple Multimodal LLM for Better Handling of Text-Rich Visual Questions
Hu, Wenbo, Xu, Yifan, Li, Yi, Li, Weiyue, Chen, Zeyuan, Tu, Zhuowen
Vision Language Models (VLMs), which extend Large Language Models (LLM) by incorporating visual understanding capability, have demonstrated significant advancements in addressing open-ended visual question-answering (VQA) tasks. However, these models cannot accurately interpret images infused with text, a common occurrence in real-world scenarios. Standard procedures for extracting information from images often involve learning a fixed set of query embeddings. These embeddings are designed to encapsulate image contexts and are later used as soft prompt inputs in LLMs. Yet, this process is limited to the token count, potentially curtailing the recognition of scenes with text-rich context. To improve upon them, the present study introduces BLIVA: an augmented version of InstructBLIP with Visual Assistant. BLIVA incorporates the query embeddings from InstructBLIP and also directly projects encoded patch embeddings into the LLM, a technique inspired by LLaVA. This approach assists the model to capture intricate details potentially missed during the query decoding process. Empirical evidence demonstrates that our model, BLIVA, significantly enhances performance in processing text-rich VQA benchmarks (up to 17.76% in OCR-VQA benchmark) and in undertaking general (not particularly text-rich) VQA benchmarks (up to 7.9% in Visual Spatial Reasoning benchmark), and achieved 17.72% overall improvement in a comprehensive multimodal LLM benchmark (MME), comparing to our baseline InstructBLIP. BLIVA demonstrates significant capability in decoding real-world images, irrespective of text presence. To demonstrate the broad industry applications enabled by BLIVA, we evaluate the model using a new dataset comprising YouTube thumbnails paired with question-answer sets across 11 diverse categories. Our code and models are freely accessible at https://github.com/mlpc-ucsd/BLIVA.
Random resistive memory-based deep extreme point learning machine for unified visual processing
Wang, Shaocong, Gao, Yizhao, Li, Yi, Zhang, Woyu, Yu, Yifei, Wang, Bo, Lin, Ning, Chen, Hegan, Zhang, Yue, Jiang, Yang, Wang, Dingchen, Chen, Jia, Dai, Peng, Jiang, Hao, Lin, Peng, Zhang, Xumeng, Qi, Xiaojuan, Xu, Xiaoxin, So, Hayden, Wang, Zhongrui, Shang, Dashan, Liu, Qi, Cheng, Kwang-Ting, Liu, Ming
Visual sensors, including 3D LiDAR, neuromorphic DVS sensors, and conventional frame cameras, are increasingly integrated into edge-side intelligent machines. Realizing intensive multi-sensory data analysis directly on edge intelligent machines is crucial for numerous emerging edge applications, such as augmented and virtual reality and unmanned aerial vehicles, which necessitates unified data representation, unprecedented hardware energy efficiency and rapid model training. However, multi-sensory data are intrinsically heterogeneous, causing significant complexity in the system development for edge-side intelligent machines. In addition, the performance of conventional digital hardware is limited by the physically separated processing and memory units, known as the von Neumann bottleneck, and the physical limit of transistor scaling, which contributes to the slowdown of Moore's law. These limitations are further intensified by the tedious training of models with ever-increasing sizes. We propose a novel hardware-software co-design, random resistive memory-based deep extreme point learning machine (DEPLM), that offers efficient unified point set analysis. We show the system's versatility across various data modalities and two different learning tasks. Compared to a conventional digital hardware-based system, our co-design system achieves huge energy efficiency improvements and training cost reduction when compared to conventional systems. Our random resistive memory-based deep extreme point learning machine may pave the way for energy-efficient and training-friendly edge AI across various data modalities and tasks.
Lassoed Tree Boosting
Schuler, Alejandro, Li, Yi, van der Laan, Mark
Gradient boosting performs exceptionally in most prediction problems and scales well to large datasets. In this paper we prove that a ``lassoed'' gradient boosted tree algorithm with early stopping achieves faster than $n^{-1/4}$ L2 convergence in the large nonparametric space of cadlag functions of bounded sectional variation. This rate is remarkable because it does not depend on the dimension, sparsity, or smoothness. We use simulation and real data to confirm our theory and demonstrate empirical performance and scalability on par with standard boosting. Our convergence proofs are based on a novel, general theorem on early stopping with empirical loss minimizers of nested Donsker classes.
Combined Scheduling, Memory Allocation and Tensor Replacement for Minimizing Off-Chip Data Accesses of DNN Accelerators
Li, Yi, Gupta, Aarti, Malik, Sharad
Specialized hardware accelerators have been extensively used for Deep Neural Networks (DNNs) to provide power/performance benefits. These accelerators contain specialized hardware that supports DNN operators, and scratchpad memory for storing the tensor operands. Often, the size of the scratchpad is insufficient to store all the tensors needed for the computation, and additional data accesses are needed to move tensors back and forth from host memory during the computation with significant power/performance overhead. The volume of these additional data accesses depends on the operator schedule, and memory allocation (specific locations selected for the tensors in the scratchpad). We propose an optimization framework, named COSMA, for mapping DNNs to an accelerator that finds the optimal operator schedule, memory allocation and tensor replacement that minimizes the additional data accesses. COSMA provides an Integer Linear Programming (ILP) formulation to generate the optimal solution for mapping a DNN to the accelerator for a given scratchpad size. We demonstrate that, using an off-the-shelf ILP solver, COSMA obtains the optimal solution in seconds for a wide-range of state-of-the-art DNNs for different applications. Further, it out-performs existing methods by reducing on average 84% of the non-compulsory data accesses. We further propose a divide-and-conquer heuristic to scale up to certain complex DNNs generated by Neural Architecture Search, and this heuristic solution reduces on average 85% data accesses compared with other works.
City Foundation Models for Learning General Purpose Representations from OpenStreetMap
Balsebre, Pasquale, Huang, Weiming, Cong, Gao, Li, Yi
Pre-trained Foundation Models (PFMs) have ushered in a paradigm-shift in Artificial Intelligence, due to their ability to learn general-purpose representations that can be readily employed in a wide range of downstream tasks. While PFMs have been successfully adopted in various fields such as Natural Language Processing and Computer Vision, their capacity in handling geospatial data and answering urban questions remains limited. This can be attributed to the intrinsic heterogeneity of geospatial data, which encompasses different data types, including points, segments and regions, as well as multiple information modalities, such as a spatial position, visual characteristics and textual annotations. The proliferation of Volunteered Geographic Information initiatives, and the ever-increasing availability of open geospatial data sources, like OpenStreetMap, which is freely accessible globally, unveil a promising opportunity to bridge this gap. In this paper, we present CityFM, a self-supervised framework to train a foundation model within a selected geographical area of interest, such as a city. CityFM relies solely on open data from OSM, and produces multimodal representations of entities of different types, incorporating spatial, visual, and textual information. We analyse the entity representations generated using our foundation models from a qualitative perspective, and conduct quantitative experiments on road, building, and region-level downstream tasks. We compare its results to algorithms tailored specifically for the respective applications. In all the experiments, CityFM achieves performance superior to, or on par with, the baselines.
Pruning random resistive memory for optimizing analogue AI
Li, Yi, Wang, Songqi, Zhao, Yaping, Wang, Shaocong, Zhang, Woyu, He, Yangu, Lin, Ning, Cui, Binbin, Chen, Xi, Zhang, Shiming, Jiang, Hao, Lin, Peng, Zhang, Xumeng, Qi, Xiaojuan, Wang, Zhongrui, Xu, Xiaoxin, Shang, Dashan, Liu, Qi, Cheng, Kwang-Ting, Liu, Ming
The rapid advancement of artificial intelligence (AI) has been marked by the large language models exhibiting human-like intelligence. However, these models also present unprecedented challenges to energy consumption and environmental sustainability. One promising solution is to revisit analogue computing, a technique that predates digital computing and exploits emerging analogue electronic devices, such as resistive memory, which features in-memory computing, high scalability, and nonvolatility. However, analogue computing still faces the same challenges as before: programming nonidealities and expensive programming due to the underlying devices physics. Here, we report a universal solution, software-hardware co-design using structural plasticity-inspired edge pruning to optimize the topology of a randomly weighted analogue resistive memory neural network. Software-wise, the topology of a randomly weighted neural network is optimized by pruning connections rather than precisely tuning resistive memory weights. Hardware-wise, we reveal the physical origin of the programming stochasticity using transmission electron microscopy, which is leveraged for large-scale and low-cost implementation of an overparameterized random neural network containing high-performance sub-networks. We implemented the co-design on a 40nm 256K resistive memory macro, observing 17.3% and 19.9% accuracy improvements in image and audio classification on FashionMNIST and Spoken digits datasets, as well as 9.8% (2%) improvement in PR (ROC) in image segmentation on DRIVE datasets, respectively. This is accompanied by 82.1%, 51.2%, and 99.8% improvement in energy efficiency thanks to analogue in-memory computing. By embracing the intrinsic stochasticity and in-memory computing, this work may solve the biggest obstacle of analogue computing systems and thus unleash their immense potential for next-generation AI hardware.