Not enough data to create a plot.
Try a different view from the menu above.
Li, Xinhui
Pipeline-Invariant Representation Learning for Neuroimaging
Li, Xinhui, Fedorov, Alex, Mathur, Mrinal, Abrol, Anees, Kiar, Gregory, Plis, Sergey, Calhoun, Vince
Deep learning has been widely applied in neuroimaging, including predicting brain-phenotype relationships from magnetic resonance imaging (MRI) volumes. MRI data usually requires extensive preprocessing prior to modeling, but variation introduced by different MRI preprocessing pipelines may lead to different scientific findings, even when using the identical data. Motivated by the data-centric perspective, we first evaluate how preprocessing pipeline selection can impact the downstream performance of a supervised learning model. We next propose two pipeline-invariant representation learning methodologies, MPSL and PXL, to improve robustness in classification performance and to capture similar neural network representations. Using 2000 human subjects from the UK Biobank dataset, we demonstrate that proposed models present unique and shared advantages, in particular that MPSL can be used to improve out-of-sample generalization to new pipelines, while PXL can be used to improve within-sample prediction performance. Both MPSL and PXL can learn more similar between-pipeline representations. These results suggest that our proposed models can be applied to mitigate pipeline-related biases, and to improve prediction robustness in brain-phenotype modeling.
Predictive Sparse Manifold Transform
Xie, Yujia, Li, Xinhui, Calhoun, Vince D.
PSMT incorporates two layers where the first sparse coding layer represents the input sequence as sparse coefficients over an overcomplete dictionary and the second manifold learning layer learns a geometric embedding space that captures topological similarity and dynamic temporal linearity in sparse coefficients. We apply PSMT on a natural video dataset and evaluate the reconstruction performance with respect to contextual variability, the number of sparse coding basis functions and training samples. We then interpret the dynamic topological organization in the embedding space. We next utilize PSMT to predict future frames compared with two baseline methods with a static embedding space. We demonstrate that PSMT with a dynamic embedding space can achieve better prediction performance compared to static baselines. Our work establishes that PSMT is an efficient unsupervised generative framework for prediction of future visual stimuli.
WeSinger: Data-augmented Singing Voice Synthesis with Auxiliary Losses
Zhang, Zewang, Zheng, Yibin, Li, Xinhui, Lu, Li
In this paper, we develop a new multi-singer Chinese neural singing voice synthesis (SVS) system named WeSinger. To improve the accuracy and naturalness of synthesized singing voice, we design several specifical modules and techniques: 1) A deep bi-directional LSTM-based duration model with multi-scale rhythm loss and post-processing step; 2) A Transformer-alike acoustic model with progressive pitch-weighted decoder loss; 3) a 24 kHz pitch-aware LPCNet neural vocoder to produce high-quality singing waveforms; 4) A novel data augmentation method with multi-singer pre-training for stronger robustness and naturalness. To our knowledge, WeSinger is the first SVS system to adopt 24 kHz LPCNet and multi-singer pre-training simultaneously. Both quantitative and qualitative evaluation results demonstrate the effectiveness of WeSinger in terms of accuracy and naturalness, and WeSinger achieves state-of-the-art performance on the recent public Chinese singing corpus Opencpop\footnote{https://wenet.org.cn/opencpop/}. Some synthesized singing samples are available online\footnote{https://zzw922cn.github.io/wesinger/}.