Li, Xiaodong
Convexified Modularity Maximization for Degree-corrected Stochastic Block Models
Chen, Yudong, Li, Xiaodong, Xu, Jiaming
The stochastic block model (SBM) is a popular framework for studying community detection in networks. This model is limited by the assumption that all nodes in the same community are statistically equivalent and have equal expected degrees. The degree-corrected stochastic block model (DCSBM) is a natural extension of SBM that allows for degree heterogeneity within communities. This paper proposes a convexified modularity maximization approach for estimating the hidden communities under DCSBM. Our approach is based on a convex programming relaxation of the classical (generalized) modularity maximization formulation, followed by a novel doubly-weighted $ \ell_1 $-norm $ k $-median procedure. We establish non-asymptotic theoretical guarantees for both approximate clustering and perfect clustering. Our approximate clustering results are insensitive to the minimum degree, and hold even in sparse regime with bounded average degrees. In the special case of SBM, these theoretical results match the best-known performance guarantees of computationally feasible algorithms. Numerically, we provide an efficient implementation of our algorithm, which is applied to both synthetic and real-world networks. Experiment results show that our method enjoys competitive performance compared to the state of the art in the literature.
Optimal Rates of Convergence for Noisy Sparse Phase Retrieval via Thresholded Wirtinger Flow
Cai, T. Tony, Li, Xiaodong, Ma, Zongming
This paper considers the noisy sparse phase retrieval problem: recovering a sparse signal $x \in \mathbb{R}^p$ from noisy quadratic measurements $y_j = (a_j' x )^2 + \epsilon_j$, $j=1, \ldots, m$, with independent sub-exponential noise $\epsilon_j$. The goals are to understand the effect of the sparsity of $x$ on the estimation precision and to construct a computationally feasible estimator to achieve the optimal rates. Inspired by the Wirtinger Flow [12] proposed for noiseless and non-sparse phase retrieval, a novel thresholded gradient descent algorithm is proposed and it is shown to adaptively achieve the minimax optimal rates of convergence over a wide range of sparsity levels when the $a_j$'s are independent standard Gaussian random vectors, provided that the sample size is sufficiently large compared to the sparsity of $x$.
Robust and computationally feasible community detection in the presence of arbitrary outlier nodes
Cai, T. Tony, Li, Xiaodong
Community detection, which aims to cluster $N$ nodes in a given graph into $r$ distinct groups based on the observed undirected edges, is an important problem in network data analysis. In this paper, the popular stochastic block model (SBM) is extended to the generalized stochastic block model (GSBM) that allows for adversarial outlier nodes, which are connected with the other nodes in the graph in an arbitrary way. Under this model, we introduce a procedure using convex optimization followed by $k$-means algorithm with $k=r$. Both theoretical and numerical properties of the method are analyzed. A theoretical guarantee is given for the procedure to accurately detect the communities with small misclassification rate under the setting where the number of clusters can grow with $N$. This theoretical result admits to the best-known result in the literature of computationally feasible community detection in SBM without outliers. Numerical results show that our method is both computationally fast and robust to different kinds of outliers, while some popular computationally fast community detection algorithms, such as spectral clustering applied to adjacency matrices or graph Laplacians, may fail to retrieve the major clusters due to a small portion of outliers. We apply a slight modification of our method to a political blogs data set, showing that our method is competent in practice and comparable to existing computationally feasible methods in the literature. To the best of the authors' knowledge, our result is the first in the literature in terms of clustering communities with fast growing numbers under the GSBM where a portion of arbitrary outlier nodes exist.
Compressed Sensing and Matrix Completion with Constant Proportion of Corruptions
Li, Xiaodong
We improve existing results in the field of compressed sensing and matrix completion when sampled data may be grossly corrupted. We introduce three new theorems. 1) In compressed sensing, we show that if the m \times n sensing matrix has independent Gaussian entries, then one can recover a sparse signal x exactly by tractable \ell1 minimimization even if a positive fraction of the measurements are arbitrarily corrupted, provided the number of nonzero entries in x is O(m/(log(n/m) + 1)). 2) In the very general sensing model introduced in "A probabilistic and RIPless theory of compressed sensing" by Candes and Plan, and assuming a positive fraction of corrupted measurements, exact recovery still holds if the signal now has O(m/(log^2 n)) nonzero entries. 3) Finally, we prove that one can recover an n \times n low-rank matrix from m corrupted sampled entries by tractable optimization provided the rank is on the order of O(m/(n log^2 n)); again, this holds when there is a positive fraction of corrupted samples.