Not enough data to create a plot.
Try a different view from the menu above.
Li, Xiaobing
NotaGen: Advancing Musicality in Symbolic Music Generation with Large Language Model Training Paradigms
Wang, Yashan, Wu, Shangda, Hu, Jianhuai, Du, Xingjian, Peng, Yueqi, Huang, Yongxin, Fan, Shuai, Li, Xiaobing, Yu, Feng, Sun, Maosong
We introduce NotaGen, a symbolic music generation model aiming to explore the potential of producing high-quality classical sheet music. Inspired by the success of Large Language Models (LLMs), NotaGen adopts pre-training, fine-tuning, and reinforcement learning paradigms (henceforth referred to as the LLM training paradigms). It is pre-trained on 1.6M pieces of music in ABC notation, and then fine-tuned on approximately 9K high-quality classical compositions conditioned on "period-composer-instrumentation" prompts. For reinforcement learning, we propose the CLaMP-DPO method, which further enhances generation quality and controllability without requiring human annotations or predefined rewards. Our experiments demonstrate the efficacy of CLaMP-DPO in symbolic music generation models with different architectures and encoding schemes. Furthermore, subjective A/B tests show that NotaGen outperforms baseline models against human compositions, greatly advancing musical aesthetics in symbolic music generation.
CLaMP 2: Multimodal Music Information Retrieval Across 101 Languages Using Large Language Models
Wu, Shangda, Wang, Yashan, Yuan, Ruibin, Guo, Zhancheng, Tan, Xu, Zhang, Ge, Zhou, Monan, Chen, Jing, Mu, Xuefeng, Gao, Yuejie, Dong, Yuanliang, Liu, Jiafeng, Li, Xiaobing, Yu, Feng, Sun, Maosong
Challenges in managing linguistic diversity and integrating various musical modalities are faced by current music information retrieval systems. These limitations reduce their effectiveness in a global, multimodal music environment. To address these issues, we introduce CLaMP 2, a system compatible with 101 languages that supports both ABC notation (a text-based musical notation format) and MIDI (Musical Instrument Digital Interface) for music information retrieval. CLaMP 2, pre-trained on 1.5 million ABC-MIDI-text triplets, includes a multilingual text encoder and a multimodal music encoder aligned via contrastive learning. By leveraging large language models, we obtain refined and consistent multilingual descriptions at scale, significantly reducing textual noise and balancing language distribution. Our experiments show that CLaMP 2 achieves state-of-the-art results in both multilingual semantic search and music classification across modalities, thus establishing a new standard for inclusive and global music information retrieval.
Beyond Language Models: Byte Models are Digital World Simulators
Wu, Shangda, Tan, Xu, Wang, Zili, Wang, Rui, Li, Xiaobing, Sun, Maosong
Traditional deep learning often overlooks bytes, the basic units of the digital world, where all forms of information and operations are encoded and manipulated in binary format. Inspired by the success of next token prediction in natural language processing, we introduce bGPT, a model with next byte prediction to simulate the digital world. bGPT matches specialized models in performance across various modalities, including text, audio, and images, and offers new possibilities for predicting, simulating, and diagnosing algorithm or hardware behaviour. It has almost flawlessly replicated the process of converting symbolic music data, achieving a low error rate of 0.0011 bits per byte in converting ABC notation to MIDI format. In addition, bGPT demonstrates exceptional capabilities in simulating CPU behaviour, with an accuracy exceeding 99.99% in executing various operations. Leveraging next byte prediction, models like bGPT can directly learn from vast binary data, effectively simulating the intricate patterns of the digital world.
Chord-Conditioned Melody Choralization with Controllable Harmonicity and Polyphonicity
Wu, Shangda, Li, Xiaobing, Sun, Maosong
Melody choralization, i.e. generating a four-part chorale based on a user-given melody, has long been closely associated with J.S. Bach chorales. Previous neural network-based systems rarely focus on chorale generation conditioned on a chord progression, and none of them realised controllable melody choralization. To enable neural networks to learn the general principles of counterpoint from Bach's chorales, we first design a music representation that encoded chord symbols for chord conditioning. We then propose DeepChoir, a melody choralization system, which can generate a four-part chorale for a given melody conditioned on a chord progression. Furthermore, with the improved density sampling, a user can control the extent of harmonicity and polyphonicity for the chorale generated by DeepChoir. Experimental results reveal the effectiveness of our data representation and the controllability of DeepChoir over harmonicity and polyphonicity. The code and generated samples (chorales, folk songs and a symphony) of DeepChoir, and the dataset we use now are available at https://github.com/sander-wood/deepchoir.