Li, Xiang-Yang
InFi: End-to-End Learning to Filter Input for Resource-Efficiency in Mobile-Centric Inference
Yuan, Mu, Zhang, Lan, He, Fengxiang, Tong, Xueting, Song, Miao-Hui, Xu, Zhengyuan, Li, Xiang-Yang
Mobile-centric AI applications have high requirements for resource-efficiency of model inference. Input filtering is a promising approach to eliminate the redundancy so as to reduce the cost of inference. Previous efforts have tailored effective solutions for many applications, but left two essential questions unanswered: (1) theoretical filterability of an inference workload to guide the application of input filtering techniques, thereby avoiding the trial-and-error cost for resource-constrained mobile applications; (2) robust discriminability of feature embedding to allow input filtering to be widely effective for diverse inference tasks and input content. To answer them, we first formalize the input filtering problem and theoretically compare the hypothesis complexity of inference models and input filters to understand the optimization potential. Then we propose the first end-to-end learnable input filtering framework that covers most state-of-the-art methods and surpasses them in feature embedding with robust discriminability. We design and implement InFi that supports six input modalities and multiple mobile-centric deployments. Comprehensive evaluations confirm our theoretical results and show that InFi outperforms strong baselines in applicability, accuracy, and efficiency. InFi achieve 8.5x throughput and save 95% bandwidth, while keeping over 90% accuracy, for a video analytics application on mobile platforms.
TPMDP: Threshold Personalized Multi-party Differential Privacy via Optimal Gaussian Mechanism
Liu, Jiandong, Zhang, Lan, Lv, Chaojie, Yu, Ting, Freris, Nikolaos M., Li, Xiang-Yang
In modern distributed computing applications, such as federated learning and AIoT systems, protecting privacy is crucial to prevent adversarial parties from colluding to steal others' private information. However, guaranteeing the utility of computation outcomes while protecting all parties' data privacy can be challenging, particularly when the parties' privacy requirements are highly heterogeneous. In this paper, we propose a novel privacy framework for multi-party computation called Threshold Personalized Multi-party Differential Privacy (TPMDP), which addresses a limited number of semi-honest colluding adversaries. Our framework enables each party to have a personalized privacy budget. We design a multi-party Gaussian mechanism that is easy to implement and satisfies TPMDP, wherein each party perturbs the computation outcome in a secure multi-party computation protocol using Gaussian noise. To optimize the utility of the mechanism, we cast the utility loss minimization problem into a linear programming (LP) problem. We exploit the specific structure of this LP problem to compute the optimal solution after O(n) computations, where n is the number of parties, while a generic solver may require exponentially many computations. Extensive experiments demonstrate the benefits of our approach in terms of low utility loss and high efficiency compared to existing private mechanisms that do not consider personalized privacy requirements or collusion thresholds.
Data Origin Inference in Machine Learning
Xu, Mingxue, Li, Xiang-Yang
It is a growing direction to utilize unintended memorization in ML models to benefit real-world applications, with recent efforts like user auditing, dataset ownership inference and forgotten data measurement. Standing on the point of ML model development, we introduce a process named data origin inference, to assist ML developers in locating missed or faulty data origin in training set without maintaining strenuous metadata. We formally define the data origin and the data origin inference task in the development of the ML model (mainly neural networks). Then we propose a novel inference strategy combining embedded-space multiple instance classification and shadow training. Diverse use cases cover language, visual and structured data, with various kinds of data origin (e.g. business, county, movie, mobile user, text author). A comprehensive performance analysis of our proposed strategy contains referenced target model layers, available testing data for each origin, and in shadow training, the implementations of feature extraction as well as shadow models. Our best inference accuracy achieves 98.96% in the language use case when the target model is a transformer-based deep neural network. Furthermore, we give a statistical analysis of different kinds of data origin to investigate what kind of origin is probably to be inferred correctly.
BinauralGrad: A Two-Stage Conditional Diffusion Probabilistic Model for Binaural Audio Synthesis
Leng, Yichong, Chen, Zehua, Guo, Junliang, Liu, Haohe, Chen, Jiawei, Tan, Xu, Mandic, Danilo, He, Lei, Li, Xiang-Yang, Qin, Tao, Zhao, Sheng, Liu, Tie-Yan
Binaural audio plays a significant role in constructing immersive augmented and virtual realities. As it is expensive to record binaural audio from the real world, synthesizing them from mono audio has attracted increasing attention. This synthesis process involves not only the basic physical warping of the mono audio, but also room reverberations and head/ear related filtrations, which, however, are difficult to accurately simulate in traditional digital signal processing. In this paper, we formulate the synthesis process from a different perspective by decomposing the binaural audio into a common part that shared by the left and right channels as well as a specific part that differs in each channel. Accordingly, we propose BinauralGrad, a novel two-stage framework equipped with diffusion models to synthesize them respectively. Specifically, in the first stage, the common information of the binaural audio is generated with a single-channel diffusion model conditioned on the mono audio, based on which the binaural audio is generated by a two-channel diffusion model in the second stage. Combining this novel perspective of two-stage synthesis with advanced generative models (i.e., the diffusion models), the proposed BinauralGrad is able to generate accurate and high-fidelity binaural audio samples. Experiment results show that on a benchmark dataset, BinauralGrad outperforms the existing baselines by a large margin in terms of both object and subject evaluation metrics (Wave L2: 0.128 vs. 0.157, MOS: 3.80 vs. 3.61).
FastCorrect: Fast Error Correction with Edit Alignment for Automatic Speech Recognition
Leng, Yichong, Tan, Xu, Zhu, Linchen, Xu, Jin, Luo, Renqian, Liu, Linquan, Qin, Tao, Li, Xiang-Yang, Lin, Ed, Liu, Tie-Yan
Error correction techniques have been used to refine the output sentences from automatic speech recognition (ASR) models and achieve a lower word error rate (WER) than original ASR outputs. Previous works usually use a sequence-to-sequence model to correct an ASR output sentence autoregressively, which causes large latency and cannot be deployed in online ASR services. A straightforward solution to reduce latency, inspired by non-autoregressive (NAR) neural machine translation, is to use an NAR sequence generation model for ASR error correction, which, however, comes at the cost of significantly increased ASR error rate. In this paper, observing distinctive error patterns and correction operations (i.e., insertion, deletion, and substitution) in ASR, we propose FastCorrect, a novel NAR error correction model based on edit alignment. In training, FastCorrect aligns each source token from an ASR output sentence to the target tokens from the corresponding ground-truth sentence based on the edit distance between the source and target sentences, and extracts the number of target tokens corresponding to each source token during edition/correction, which is then used to train a length predictor and to adjust the source tokens to match the length of the target sentence for parallel generation. In inference, the token number predicted by the length predictor is used to adjust the source tokens for target sequence generation. Experiments on the public AISHELL-1 dataset and an internal industrial-scale ASR dataset show the effectiveness of FastCorrect for ASR error correction: 1) it speeds up the inference by 6-9 times and maintains the accuracy (8-14% WER reduction) compared with the autoregressive correction model; and 2) it outperforms the popular NAR models adopted in neural machine translation and text edition by a large margin.
FastCorrect 2: Fast Error Correction on Multiple Candidates for Automatic Speech Recognition
Leng, Yichong, Tan, Xu, Wang, Rui, Zhu, Linchen, Xu, Jin, Liu, Wenjie, Liu, Linquan, Qin, Tao, Li, Xiang-Yang, Lin, Edward, Liu, Tie-Yan
Error correction is widely used in automatic speech recognition (ASR) to post-process the generated sentence, and can further reduce the word error rate (WER). Although multiple candidates are generated by an ASR system through beam search, current error correction approaches can only correct one sentence at a time, failing to leverage the voting effect from multiple candidates to better detect and correct error tokens. In this work, we propose FastCorrect 2, an error correction model that takes multiple ASR candidates as input for better correction accuracy. FastCorrect 2 adopts non-autoregressive generation for fast inference, which consists of an encoder that processes multiple source sentences and a decoder that generates the target sentence in parallel from the adjusted source sentence, where the adjustment is based on the predicted duration of each source token. However, there are some issues when handling multiple source sentences. First, it is non-trivial to leverage the voting effect from multiple source sentences since they usually vary in length. Thus, we propose a novel alignment algorithm to maximize the degree of token alignment among multiple sentences in terms of token and pronunciation similarity. Second, the decoder can only take one adjusted source sentence as input, while there are multiple source sentences. Thus, we develop a candidate predictor to detect the most suitable candidate for the decoder. Experiments on our inhouse dataset and AISHELL-1 show that FastCorrect 2 can further reduce the WER over the previous correction model with single candidate by 3.2% and 2.6%, demonstrating the effectiveness of leveraging multiple candidates in ASR error correction. FastCorrect 2 achieves better performance than the cascaded re-scoring and correction pipeline and can serve as a unified post-processing module for ASR.
Learning to Teach with Deep Interactions
Fan, Yang, Xia, Yingce, Wu, Lijun, Xie, Shufang, Liu, Weiqing, Bian, Jiang, Qin, Tao, Li, Xiang-Yang, Liu, Tie-Yan
Machine teaching uses a meta/teacher model to guide the training of a student model (which will be used in real tasks) through training data selection, loss function design, etc. Previously, the teacher model only takes shallow/surface information as inputs (e.g., training iteration number, loss and accuracy from training/validation sets) while ignoring the internal states of the student model, which limits the potential of learning to teach. In this work, we propose an improved data teaching algorithm, where the teacher model deeply interacts with the student model by accessing its internal states. The teacher model is jointly trained with the student model using meta gradients propagated from a validation set. We conduct experiments on image classification with clean/noisy labels and empirically demonstrate that our algorithm makes significant improvement over previous data teaching methods.
Unsupervised Pivot Translation for Distant Languages
Leng, Yichong, Tan, Xu, Qin, Tao, Li, Xiang-Yang, Liu, Tie-Yan
Unsupervised neural machine translation (NMT) has attracted a lot of attention recently. While state-of-the-art methods for unsupervised translation usually perform well between similar languages (e.g., English-German translation), they perform poorly between distant languages, because unsupervised alignment does not work well for distant languages. In this work, we introduce unsupervised pivot translation for distant languages, which translates a language to a distant language through multiple hops, and the unsupervised translation on each hop is relatively easier than the original direct translation. We propose a learning to route (LTR) method to choose the translation path between the source and target languages. LTR is trained on language pairs whose best translation path is available and is applied on the unseen language pairs for path selection. Experiments on 20 languages and 294 distant language pairs demonstrate the advantages of the unsupervised pivot translation for distant languages, as well as the effectiveness of the proposed LTR for path selection. Specifically, in the best case, LTR achieves an improvement of 5.58 BLEU points over the conventional direct unsupervised method.
Learning to Teach
Fan, Yang, Tian, Fei, Qin, Tao, Li, Xiang-Yang, Liu, Tie-Yan
Teaching plays a very important role in our society, by spreading human knowledge and educating our next generations. A good teacher will select appropriate teaching materials, impact suitable methodologies, and set up targeted examinations, according to the learning behaviors of the students. In the field of artificial intelligence, however, one has not fully explored the role of teaching, and pays most attention to machine \emph{learning}. In this paper, we argue that equal attention, if not more, should be paid to teaching, and furthermore, an optimization framework (instead of heuristics) should be used to obtain good teaching strategies. We call this approach `learning to teach'. In the approach, two intelligent agents interact with each other: a student model (which corresponds to the learner in traditional machine learning algorithms), and a teacher model (which determines the appropriate data, loss function, and hypothesis space to facilitate the training of the student model). The teacher model leverages the feedback from the student model to optimize its own teaching strategies by means of reinforcement learning, so as to achieve teacher-student co-evolution. To demonstrate the practical value of our proposed approach, we take the training of deep neural networks (DNN) as an example, and show that by using the learning to teach techniques, we are able to use much less training data and fewer iterations to achieve almost the same accuracy for different kinds of DNN models (e.g., multi-layer perceptron, convolutional neural networks and recurrent neural networks) under various machine learning tasks (e.g., image classification and text understanding).