Li, Lin
FRAMU: Attention-based Machine Unlearning using Federated Reinforcement Learning
Shaik, Thanveer, Tao, Xiaohui, Li, Lin, Xie, Haoran, Cai, Taotao, Zhu, Xiaofeng, Li, Qing
Machine Unlearning is an emerging field that addresses data privacy issues by enabling the removal of private or irrelevant data from the Machine Learning process. Challenges related to privacy and model efficiency arise from the use of outdated, private, and irrelevant data. These issues compromise both the accuracy and the computational efficiency of models in both Machine Learning and Unlearning. To mitigate these challenges, we introduce a novel framework, Attention-based Machine Unlearning using Federated Reinforcement Learning (FRAMU). This framework incorporates adaptive learning mechanisms, privacy preservation techniques, and optimization strategies, making it a well-rounded solution for handling various data sources, either single-modality or multi-modality, while maintaining accuracy and privacy. FRAMU's strength lies in its adaptability to fluctuating data landscapes, its ability to unlearn outdated, private, or irrelevant data, and its support for continual model evolution without compromising privacy. Our experiments, conducted on both single-modality and multi-modality datasets, revealed that FRAMU significantly outperformed baseline models. Additional assessments of convergence behavior and optimization strategies further validate the framework's utility in federated learning applications. Overall, FRAMU advances Machine Unlearning by offering a robust, privacy-preserving solution that optimizes model performance while also addressing key challenges in dynamic data environments.
QXAI: Explainable AI Framework for Quantitative Analysis in Patient Monitoring Systems
Shaik, Thanveer, Tao, Xiaohui, Xie, Haoran, Li, Lin, Velasquez, Juan D., Higgins, Niall
Artificial Intelligence techniques can be used to classify a patient's physical activities and predict vital signs for remote patient monitoring. Regression analysis based on non-linear models like deep learning models has limited explainability due to its black-box nature. This can require decision-makers to make blind leaps of faith based on non-linear model results, especially in healthcare applications. In non-invasive monitoring, patient data from tracking sensors and their predisposing clinical attributes act as input features for predicting future vital signs. Explaining the contributions of various features to the overall output of the monitoring application is critical for a clinician's decision-making. In this study, an Explainable AI for Quantitative analysis (QXAI) framework is proposed with post-hoc model explainability and intrinsic explainability for regression and classification tasks in a supervised learning approach. This was achieved by utilizing the Shapley values concept and incorporating attention mechanisms in deep learning models. We adopted the artificial neural networks (ANN) and attention-based Bidirectional LSTM (BiLSTM) models for the prediction of heart rate and classification of physical activities based on sensor data. The deep learning models achieved state-of-the-art results in both prediction and classification tasks. Global explanation and local explanation were conducted on input data to understand the feature contribution of various patient data. The proposed QXAI framework was evaluated using PPG-DaLiA data to predict heart rate and mobile health (MHEALTH) data to classify physical activities based on sensor data. Monte Carlo approximation was applied to the framework to overcome the time complexity and high computation power requirements required for Shapley value calculations.
Graph-enabled Reinforcement Learning for Time Series Forecasting with Adaptive Intelligence
Shaik, Thanveer, Tao, Xiaohui, Xie, Haoran, Li, Lin, Yong, Jianming, Li, Yuefeng
Reinforcement learning is well known for its ability to model sequential tasks and learn latent data patterns adaptively. Deep learning models have been widely explored and adopted in regression and classification tasks. However, deep learning has its limitations such as the assumption of equally spaced and ordered data, and the lack of ability to incorporate graph structure in terms of time-series prediction. Graphical neural network (GNN) has the ability to overcome these challenges and capture the temporal dependencies in time-series data. In this study, we propose a novel approach for predicting time-series data using GNN and monitoring with Reinforcement Learning (RL). GNNs are able to explicitly incorporate the graph structure of the data into the model, allowing them to capture temporal dependencies in a more natural way. This approach allows for more accurate predictions in complex temporal structures, such as those found in healthcare, traffic and weather forecasting. We also fine-tune our GraphRL model using a Bayesian optimisation technique to further improve performance. The proposed framework outperforms the baseline models in time-series forecasting and monitoring. The contributions of this study include the introduction of a novel GraphRL framework for time-series prediction and the demonstration of the effectiveness of GNNs in comparison to traditional deep learning models such as RNNs and LSTMs. Overall, this study demonstrates the potential of GraphRL in providing accurate and efficient predictions in dynamic RL environments.
Exploring the Landscape of Machine Unlearning: A Comprehensive Survey and Taxonomy
Shaik, Thanveer, Tao, Xiaohui, Xie, Haoran, Li, Lin, Zhu, Xiaofeng, Li, Qing
Machine unlearning (MU) is gaining increasing attention due to the need to remove or modify predictions made by machine learning (ML) models. While training models have become more efficient and accurate, the importance of unlearning previously learned information has become increasingly significant in fields such as privacy, security, and fairness. This paper presents a comprehensive survey of MU, covering current state-of-the-art techniques and approaches, including data deletion, perturbation, and model updates. In addition, commonly used metrics and datasets are also presented. The paper also highlights the challenges that need to be addressed, including attack sophistication, standardization, transferability, interpretability, training data, and resource constraints. The contributions of this paper include discussions about the potential benefits of MU and its future directions. Additionally, the paper emphasizes the need for researchers and practitioners to continue exploring and refining unlearning techniques to ensure that ML models can adapt to changing circumstances while maintaining user trust. The importance of unlearning is further highlighted in making Artificial Intelligence (AI) more trustworthy and transparent, especially with the increasing importance of AI in various domains that involve large amounts of personal user data.
Towards Causal Classification: A Comprehensive Study on Graph Neural Networks
Job, Simi, Tao, Xiaohui, Cai, Taotao, Li, Lin, Xie, Haoran, Yong, Jianming
The exploration of Graph Neural Networks (GNNs) for processing graph-structured data has expanded, particularly their potential for causal analysis due to their universal approximation capabilities. Anticipated to significantly enhance common graph-based tasks such as classification and prediction, the development of a causally enhanced GNN framework is yet to be thoroughly investigated. Addressing this shortfall, our study delves into nine benchmark graph classification models, testing their strength and versatility across seven datasets spanning three varied domains to discern the impact of causality on the predictive prowess of GNNs. This research offers a detailed assessment of these models, shedding light on their efficiency, and flexibility in different data environments, and highlighting areas needing advancement. Our findings are instrumental in furthering the understanding and practical application of GNNs in diverse datacentric fields
Higher-Order Equivariant Neural Networks for Charge Density Prediction in Materials
Koker, Teddy, Quigley, Keegan, Taw, Eric, Tibbetts, Kevin, Li, Lin
The calculation of electron density distribution using density functional theory (DFT) in materials and molecules is central to the study of their quantum and macro-scale properties, yet accurate and efficient calculation remains a long-standing challenge in the field of material science. This work introduces ChargE3Net, an E(3)-equivariant graph neural network for predicting electron density in atomic systems. ChargE3Net achieves equivariance through the use of higher-order tensor representations, and directly predicts the charge density at any arbitrary point in the system. We show that our method achieves greater performance than prior work on large and diverse sets of molecules and materials, and scales to larger systems than what is feasible to compute with DFT. Using predicted electron densities as an initialization, we show that fewer self-consistent iterations are required to converge DFT over the default initialization. In addition, we show that non-self-consistent calculations using the predicted electron densities can predict electronic and thermodynamic properties of materials at near-DFT accuracy.
FIMO: A Challenge Formal Dataset for Automated Theorem Proving
Liu, Chengwu, Shen, Jianhao, Xin, Huajian, Liu, Zhengying, Yuan, Ye, Wang, Haiming, Ju, Wei, Zheng, Chuanyang, Yin, Yichun, Li, Lin, Zhang, Ming, Liu, Qun
We present FIMO, an innovative dataset comprising formal mathematical problem statements sourced from the International Mathematical Olympiad (IMO) Shortlisted Problems. Designed to facilitate advanced automated theorem proving at the IMO level, FIMO is currently tailored for the Lean formal language. It comprises 149 formal problem statements, accompanied by both informal problem descriptions and their corresponding LaTeX-based informal proofs. Through initial experiments involving GPT-4, our findings underscore the existing limitations in current methodologies, indicating a substantial journey ahead before achieving satisfactory IMO-level automated theorem proving outcomes.
Exploring Causal Learning through Graph Neural Networks: An In-depth Review
Job, Simi, Tao, Xiaohui, Cai, Taotao, Xie, Haoran, Li, Lin, Yong, Jianming, Li, Qing
In machine learning, exploring data correlations to predict outcomes is a fundamental task. Recognizing causal relationships embedded within data is pivotal for a comprehensive understanding of system dynamics, the significance of which is paramount in data-driven decision-making processes. Beyond traditional methods, there has been a surge in the use of graph neural networks (GNNs) for causal learning, given their capabilities as universal data approximators. Thus, a thorough review of the advancements in causal learning using GNNs is both relevant and timely. To structure this review, we introduce a novel taxonomy that encompasses various state-of-the-art GNN methods employed in studying causality. GNNs are further categorized based on their applications in the causality domain. We further provide an exhaustive compilation of datasets integral to causal learning with GNNs to serve as a resource for practical study. This review also touches upon the application of causal learning across diverse sectors. We conclude the review with insights into potential challenges and promising avenues for future exploration in this rapidly evolving field of machine learning.
Machine-learning-accelerated simulations to enable automatic surface reconstruction
Du, Xiaochen, Damewood, James K., Lunger, Jaclyn R., Millan, Reisel, Yildiz, Bilge, Li, Lin, Gómez-Bombarelli, Rafael
Understanding material surfaces and interfaces is vital in applications like catalysis or electronics. By combining energies from electronic structure with statistical mechanics, ab initio simulations can in principle predict the structure of material surfaces as a function of thermodynamic variables. However, accurate energy simulations are prohibitive when coupled to the vast phase space that must be statistically sampled. Here, we present a bi-faceted computational loop to predict surface phase diagrams of multi-component materials that accelerates both the energy scoring and statistical sampling methods. Fast, scalable, and data-efficient machine learning interatomic potentials are trained on high-throughput density-functional theory calculations through closed-loop active learning. Markov-chain Monte Carlo sampling in the semi-grand canonical ensemble is enabled by using virtual surface sites. The predicted surfaces for GaN(0001), Si(111), and SrTiO3(001) are in agreement with past work and suggest that the proposed strategy can model complex material surfaces and discover previously unreported surface terminations.
Interpretable Geoscience Artificial Intelligence (XGeoS-AI): Application to Demystify Image Recognition
Xu, Jin-Jian, Zhang, Hao, Tang, Chao-Sheng, Li, Lin, Shi, Bin
As Earth science enters the era of big data, artificial intelligence (AI) not only offers great potential for solving geoscience problems, but also plays a critical role in accelerating the understanding of the complex, interactive, and multiscale processes of Earth's behavior. As geoscience AI models are progressively utilized for significant predictions in crucial situations, geoscience researchers are increasingly demanding their interpretability and versatility. This study proposes an interpretable geoscience artificial intelligence (XGeoS-AI) framework to unravel the mystery of image recognition in the Earth sciences, and its effectiveness and versatility is demonstrated by taking computed tomography (CT) image recognition as an example. Inspired by the mechanism of human vision, the proposed XGeoS-AI framework generates a threshold value from a local region within the whole image to complete the recognition. Different kinds of artificial intelligence (AI) methods, such as Support Vector Regression (SVR), Multilayer Perceptron (MLP), Convolutional Neural Network (CNN), can be adopted as the AI engines of the proposed XGeoS-AI framework to efficiently complete geoscience image recognition tasks. Experimental results demonstrate that the effectiveness, versatility, and heuristics of the proposed framework have great potential in solving geoscience image recognition problems. Interpretable AI should receive more and more attention in the field of the Earth sciences, which is the key to promoting more rational and wider applications of AI in the field of Earth sciences. In addition, the proposed interpretable framework may be the forerunner of technological innovation in the Earth sciences.