Plotting

 Li, Lin


A Comparative Study of Deep Learning and Iterative Algorithms for Joint Channel Estimation and Signal Detection

arXiv.org Artificial Intelligence

Joint channel estimation and signal detection (JCESD) is crucial in wireless communication systems, but traditional algorithms perform poorly in low signal-to-noise ratio (SNR) scenarios. Deep learning (DL) methods have been investigated, but concerns regarding computational expense and lack of validation in low-SNR settings remain. Hence, the development of a robust and low-complexity model that can deliver excellent performance across a wide range of SNRs is highly desirable. In this paper, we aim to establish a benchmark where traditional algorithms and DL methods are validated on different channel models, Doppler, and SNR settings. In particular, we propose a new DL model where the backbone network is formed by unrolling the iterative algorithm, and the hyperparameters are estimated by hypernetworks. Additionally, we adapt a lightweight DenseNet to the task of JCESD for comparison. We evaluate different methods in three aspects: generalization in terms of bit error rate (BER), robustness, and complexity. Our results indicate that DL approaches outperform traditional algorithms in the challenging low-SNR setting, while the iterative algorithm performs better in highSNR settings. Furthermore, the iterative algorithm is more robust in the presence of carrier frequency offset, whereas DL methods excel when signals are corrupted by asymmetric Gaussian noise.


Instance-wise or Class-wise? A Tale of Neighbor Shapley for Concept-based Explanation

arXiv.org Artificial Intelligence

Deep neural networks have demonstrated remarkable performance in many data-driven and prediction-oriented applications, and sometimes even perform better than humans. However, their most significant drawback is the lack of interpretability, which makes them less attractive in many real-world applications. When relating to the moral problem or the environmental factors that are uncertain such as crime judgment, financial analysis, and medical diagnosis, it is essential to mine the evidence for the model's prediction (interpret model knowledge) to convince humans. Thus, investigating how to interpret model knowledge is of paramount importance for both academic research and real applications.


Data Augmentation Alone Can Improve Adversarial Training

arXiv.org Artificial Intelligence

Adversarial training suffers from the issue of robust overfitting, which seriously impairs its generalization performance. Data augmentation, which is effective at preventing overfitting in standard training, has been observed by many previous works to be ineffective in mitigating overfitting in adversarial training. This work proves that, contrary to previous findings, data augmentation alone can significantly boost accuracy and robustness in adversarial training. We find that the hardness and the diversity of data augmentation are important factors in combating robust overfitting. In general, diversity can improve both accuracy and robustness, while hardness can boost robustness at the cost of accuracy within a certain limit and degrade them both over that limit. To mitigate robust overfitting, we first propose a new crop transformation, Cropshift, which has improved diversity compared to the conventional one (Padcrop). We then propose a new data augmentation scheme, based on Cropshift, with much improved diversity and well-balanced hardness. Empirically, our augmentation method achieves the state-of-the-art accuracy and robustness for data augmentations in adversarial training. Furthermore, when combined with weight averaging it matches, or even exceeds, the performance of the best contemporary regularization methods for alleviating robust overfitting. Code is available at: https://github.com/TreeLLi/DA-Alone-Improves-AT.


Remote patient monitoring using artificial intelligence: Current state, applications, and challenges

arXiv.org Artificial Intelligence

The adoption of artificial intelligence (AI) in healthcare is growing rapidly. Remote patient monitoring (RPM) is one of the common healthcare applications that assist doctors to monitor patients with chronic or acute illness at remote locations, elderly people in-home care, and even hospitalized patients. The reliability of manual patient monitoring systems depends on staff time management which is dependent on their workload. Conventional patient monitoring involves invasive approaches which require skin contact to monitor health status. This study aims to do a comprehensive review of RPM systems including adopted advanced technologies, AI impact on RPM, challenges and trends in AI-enabled RPM. This review explores the benefits and challenges of patient-centric RPM architectures enabled with Internet of Things wearable devices and sensors using the cloud, fog, edge, and blockchain technologies. The role of AI in RPM ranges from physical activity classification to chronic disease monitoring and vital signs monitoring in emergency settings. This review results show that AI-enabled RPM architectures have transformed healthcare monitoring applications because of their ability to detect early deterioration in patients' health, personalize individual patient health parameter monitoring using federated learning, and learn human behavior patterns using techniques such as reinforcement learning. This review discusses the challenges and trends to adopt AI to RPM systems and implementation issues. The future directions of AI in RPM applications are analyzed based on the challenges and trends


Understanding and Combating Robust Overfitting via Input Loss Landscape Analysis and Regularization

arXiv.org Artificial Intelligence

Adversarial training is widely used to improve the robustness of deep neural networks to adversarial attack. However, adversarial training is prone to overfitting, and the cause is far from clear. This work sheds light on the mechanisms underlying overfitting through analyzing the loss landscape w.r.t. the input. We find that robust overfitting results from standard training, specifically the minimization of the clean loss, and can be mitigated by regularization of the loss gradients. Moreover, we find that robust overfitting turns severer during adversarial training partially because the gradient regularization effect of adversarial training becomes weaker due to the increase in the loss landscapes curvature. To improve robust generalization, we propose a new regularizer to smooth the loss landscape by penalizing the weighted logits variation along the adversarial direction. Our method significantly mitigates robust overfitting and achieves the highest robustness and efficiency compared to similar previous methods. Code is available at https://github.com/TreeLLi/Combating-RO-AdvLC.


Graph Contrastive Learning for Materials

arXiv.org Artificial Intelligence

Recent work has shown the potential of graph neural networks to efficiently predict material properties, enabling high-throughput screening of materials. Training these models, however, often requires large quantities of labelled data, obtained via costly methods such as ab initio calculations or experimental evaluation. By leveraging a series of material-specific transformations, we introduce CrystalCLR, a framework for constrastive learning of representations with crystal graph neural networks. With the addition of a novel loss function, our framework is able to learn representations competitive with engineered fingerprinting methods. We also demonstrate that via model finetuning, contrastive pretraining can improve the performance of graph neural networks for prediction of material properties and significantly outperform traditional ML models that use engineered fingerprints. Lastly, we observe that CrystalCLR produces material representations that form clusters by compound class.


Reinforcement Learning based Path Exploration for Sequential Explainable Recommendation

arXiv.org Artificial Intelligence

Recent advances in path-based explainable recommendation systems have attracted increasing attention thanks to the rich information provided by knowledge graphs. Most existing explainable recommendations only utilize static knowledge graphs and ignore the dynamic user-item evolutions, leading to less convincing and inaccurate explanations. Although there are some works that realize that modelling user's temporal sequential behaviour could boost the performance and explainability of the recommender systems, most of them either only focus on modelling user's sequential interactions within a path or independently and separately of the recommendation mechanism. In this paper, we propose a novel Temporal Meta-path Guided Explainable Recommendation leveraging Reinforcement Learning (TMER-RL), which utilizes reinforcement item-item path modelling between consecutive items with attention mechanisms to sequentially model dynamic user-item evolutions on dynamic knowledge graph for explainable recommendation. Compared with existing works that use heavy recurrent neural networks to model temporal information, we propose simple but effective neural networks to capture users' historical item features and path-based context to characterize the next purchased item. Extensive evaluations of TMER on two real-world datasets show state-of-the-art performance compared against recent strong baselines.


Visual-aware Attention Dual-stream Decoder for Video Captioning

arXiv.org Artificial Intelligence

Video captioning is a challenging task that captures different visual parts and describes them in sentences, for it requires visual and linguistic coherence. The attention mechanism in the current video captioning method learns to assign weight to each frame, promoting the decoder dynamically. This may not explicitly model the correlation and the temporal coherence of the visual features extracted in the sequence frames.To generate semantically coherent sentences, we propose a new Visual-aware Attention (VA) model, which concatenates dynamic changes of temporal sequence frames with the words at the previous moment, as the input of attention mechanism to extract sequence features.In addition, the prevalent approaches widely use the teacher-forcing (TF) learning during training, where the next token is generated conditioned on the previous ground-truth tokens. The semantic information in the previously generated tokens is lost. Therefore, we design a self-forcing (SF) stream that takes the semantic information in the probability distribution of the previous token as input to enhance the current token.The Dual-stream Decoder (DD) architecture unifies the TF and SF streams, generating sentences to promote the annotated captioning for both streams.Meanwhile, with the Dual-stream Decoder utilized, the exposure bias problem is alleviated, caused by the discrepancy between the training and testing in the TF learning.The effectiveness of the proposed Visual-aware Attention Dual-stream Decoder (VADD) is demonstrated through the result of experimental studies on Microsoft video description (MSVD) corpus and MSR-Video to text (MSR-VTT) datasets.


Generate & Rank: A Multi-task Framework for Math Word Problems

arXiv.org Artificial Intelligence

Math word problem (MWP) is a challenging and critical task in natural language processing. Many recent studies formalize MWP as a generation task and have adopted sequence-to-sequence models to transform problem descriptions to mathematical expressions. However, mathematical expressions are prone to minor mistakes while the generation objective does not explicitly handle such mistakes. To address this limitation, we devise a new ranking task for MWP and propose Generate & Rank, a multi-task framework based on a generative pre-trained language model. By joint training with generation and ranking, the model learns from its own mistakes and is able to distinguish between correct and incorrect expressions. Meanwhile, we perform tree-based disturbance specially designed for MWP and an online update to boost the ranker. We demonstrate the effectiveness of our proposed method on the benchmark and the results show that our method consistently outperforms baselines in all datasets. Particularly, in the classical Math23k, our method is 7% (78.4% $\rightarrow$ 85.4%) higher than the state-of-the-art.


Approximation Properties of Deep ReLU CNNs

arXiv.org Machine Learning

This paper is devoted to establishing $L^2$ approximation properties for deep ReLU convolutional neural networks (CNNs) on two-dimensional space. The analysis is based on a decomposition theorem for convolutional kernels with large spatial size and multi-channel. Given that decomposition and the property of the ReLU activation function, a universal approximation theorem of deep ReLU CNNs with classic structure is obtained by showing its connection with ReLU deep neural networks (DNNs) with one hidden layer. Furthermore, approximation properties are also obtained for neural networks with ResNet, pre-act ResNet, and MgNet architecture based on connections between these networks.