Not enough data to create a plot.
Try a different view from the menu above.
Li, Lin
Knowledge-Guided Prompt Learning for Request Quality Assurance in Public Code Review
Li, Lin, Yu, Xinchun, Chen, Xinyu, Liang, Peng
Public Code Review (PCR) is an assistant to the internal code review of the development team, in the form of a public Software Question Answering (SQA) community, to help developers access high-quality and efficient review services. Current methods on PCR mainly focus on the reviewer's perspective, including finding a capable reviewer, predicting comment quality, and recommending/generating review comments. However, it is not well studied that how to satisfy the review necessity requests posted by developers which can increase their visibility, which in turn acts as a prerequisite for better review responses. To this end, we propose a Knowledge-guided Prompt learning for Public Code Review (KP-PCR) to achieve developer-based code review request quality assurance (i.e., predicting request necessity and recommending tags subtask). Specifically, we reformulate the two subtasks via 1) text prompt tuning which converts both of them into a Masked Language Model (MLM) by constructing prompt templates using hard prompt; 2) knowledge and code prefix tuning which introduces external knowledge by soft prompt, and uses data flow diagrams to characterize code snippets. Finally, both of the request necessity prediction and tag recommendation subtasks output predicted results through an answer engineering module. In addition, we further analysis the time complexity of our KP-PCR that has lightweight prefix based the operation of introducing knowledge. Experimental results on the PCR dataset for the period 2011-2023 demonstrate that our KP-PCR outperforms baselines by 8.3%-28.8% in the request necessity prediction and by 0.1%-29.5% in the tag recommendation. The code implementation is released at https://github.com/WUT-IDEA/KP-PCR.
A Survey on Multimodal Benchmarks: In the Era of Large AI Models
Li, Lin, Chen, Guikun, Shi, Hanrong, Xiao, Jun, Chen, Long
The rapid evolution of Multimodal Large Language Models (MLLMs) has brought substantial advancements in artificial intelligence, significantly enhancing the capability to understand and generate multimodal content. While prior studies have largely concentrated on model architectures and training methodologies, a thorough analysis of the benchmarks used for evaluating these models remains underexplored. This survey addresses this gap by systematically reviewing 211 benchmarks that assess MLLMs across four core domains: understanding, reasoning, generation, and application. We provide a detailed analysis of task designs, evaluation metrics, and dataset constructions, across diverse modalities. We hope that this survey will contribute to the ongoing advancement of MLLM research by offering a comprehensive overview of benchmarking practices and identifying promising directions for future work. An associated GitHub repository collecting the latest papers is available.
From Easy to Hard: Learning Curricular Shape-aware Features for Robust Panoptic Scene Graph Generation
Shi, Hanrong, Li, Lin, Xiao, Jun, Zhuang, Yueting, Chen, Long
Panoptic Scene Graph Generation (PSG) aims to generate a comprehensive graph-structure representation based on panoptic segmentation masks. Despite remarkable progress in PSG, almost all existing methods neglect the importance of shape-aware features, which inherently focus on the contours and boundaries of objects. To bridge this gap, we propose a model-agnostic Curricular shApe-aware FEature (CAFE) learning strategy for PSG. Specifically, we incorporate shape-aware features (i.e., mask features and boundary features) into PSG, moving beyond reliance solely on bbox features. Furthermore, drawing inspiration from human cognition, we propose to integrate shape-aware features in an easy-to-hard manner. To achieve this, we categorize the predicates into three groups based on cognition learning difficulty and correspondingly divide the training process into three stages. Each stage utilizes a specialized relation classifier to distinguish specific groups of predicates. As the learning difficulty of predicates increases, these classifiers are equipped with features of ascending complexity. We also incorporate knowledge distillation to retain knowledge acquired in earlier stages. Due to its model-agnostic nature, CAFE can be seamlessly incorporated into any PSG model. Extensive experiments and ablations on two PSG tasks under both robust and zero-shot PSG have attested to the superiority and robustness of our proposed CAFE, which outperforms existing state-of-the-art methods by a large margin.
On Unified Prompt Tuning for Request Quality Assurance in Public Code Review
Chen, Xinyu, Li, Lin, Zhang, Rui, Liang, Peng
Public Code Review (PCR) can be implemented through a Software Question Answering (SQA) community, which facilitates high knowledge dissemination. Current methods mainly focus on the reviewer's perspective, including finding a capable reviewer, predicting comment quality, and recommending/generating review comments. Our intuition is that satisfying review necessity requests can increase their visibility, which in turn is a prerequisite for better review responses. To this end, we propose a unified framework called UniPCR to complete developer-based request quality assurance (i.e., predicting request necessity and recommending tags subtask) under a Masked Language Model (MLM). Specifically, we reformulate both subtasks via 1) text prompt tuning, which converts two subtasks into MLM by constructing prompt templates using hard prompt; 2) code prefix tuning, which optimizes a small segment of generated continuous vectors as the prefix of the code representation using soft prompt. Experimental results on the Public Code Review dataset for the time span 2011-2023 demonstrate that our UniPCR framework adapts to the two subtasks and outperforms comparable accuracy-based results with state-of-the-art methods for request quality assurance.
CrimeAlarm: Towards Intensive Intent Dynamics in Fine-grained Crime Prediction
Hu, Kaixi, Li, Lin, Xie, Qing, Tao, Xiaohui, Xu, Guandong
Granularity and accuracy are two crucial factors for crime event prediction. Within fine-grained event classification, multiple criminal intents may alternately exhibit in preceding sequential events, and progress differently in next. Such intensive intent dynamics makes training models hard to capture unobserved intents, and thus leads to sub-optimal generalization performance, especially in the intertwining of numerous potential events. To capture comprehensive criminal intents, this paper proposes a fine-grained sequential crime prediction framework, CrimeAlarm, that equips with a novel mutual distillation strategy inspired by curriculum learning. During the early training phase, spot-shared criminal intents are captured through high-confidence sequence samples. In the later phase, spot-specific intents are gradually learned by increasing the contribution of low-confidence sequences. Meanwhile, the output probability distributions are reciprocally learned between prediction networks to model unobserved criminal intents. Extensive experiments show that CrimeAlarm outperforms state-of-the-art methods in terms of NDCG@5, with improvements of 4.51% for the NYC16 and 7.73% for the CHI18 in accuracy measures.
Federated Distillation: A Survey
Li, Lin, Gou, Jianping, Yu, Baosheng, Du, Lan, Tao, Zhang Yiand Dacheng
Federated Learning (FL) seeks to train a model collaboratively without sharing private training data from individual clients. Despite its promise, FL encounters challenges such as high communication costs for large-scale models and the necessity for uniform model architectures across all clients and the server. These challenges severely restrict the practical applications of FL. To address these limitations, the integration of knowledge distillation (KD) into FL has been proposed, forming what is known as Federated Distillation (FD). FD enables more flexible knowledge transfer between clients and the server, surpassing the mere sharing of model parameters. By eliminating the need for identical model architectures across clients and the server, FD mitigates the communication costs associated with training large-scale models. This paper aims to offer a comprehensive overview of FD, highlighting its latest advancements. It delves into the fundamental principles underlying the design of FD frameworks, delineates FD approaches for tackling various challenges, and provides insights into the diverse applications of FD across different scenarios.
ContourDiff: Unpaired Image Translation with Contour-Guided Diffusion Models
Chen, Yuwen, Konz, Nicholas, Gu, Hanxue, Dong, Haoyu, Chen, Yaqian, Li, Lin, Lee, Jisoo, Mazurowski, Maciej A.
Accurately translating medical images across different modalities (e.g., CT to MRI) has numerous downstream clinical and machine learning applications. While several methods have been proposed to achieve this, they often prioritize perceptual quality with respect to output domain features over preserving anatomical fidelity. However, maintaining anatomy during translation is essential for many tasks, e.g., when leveraging masks from the input domain to develop a segmentation model with images translated to the output domain. To address these challenges, we propose ContourDiff, a novel framework that leverages domain-invariant anatomical contour representations of images. These representations are simple to extract from images, yet form precise spatial constraints on their anatomical content. We introduce a diffusion model that converts contour representations of images from arbitrary input domains into images in the output domain of interest. By applying the contour as a constraint at every diffusion sampling step, we ensure the preservation of anatomical content. We evaluate our method by training a segmentation model on images translated from CT to MRI with their original CT masks and testing its performance on real MRIs. Our method outperforms other unpaired image translation methods by a significant margin, furthermore without the need to access any input domain information during training.
One Prompt Word is Enough to Boost Adversarial Robustness for Pre-trained Vision-Language Models
Li, Lin, Guan, Haoyan, Qiu, Jianing, Spratling, Michael
Large pre-trained Vision-Language Models (VLMs) like CLIP, despite having remarkable generalization ability, are highly vulnerable to adversarial examples. This work studies the adversarial robustness of VLMs from the novel perspective of the text prompt instead of the extensively studied model weights (frozen in this work). We first show that the effectiveness of both adversarial attack and defense are sensitive to the used text prompt. Inspired by this, we propose a method to improve resilience to adversarial attacks by learning a robust text prompt for VLMs. The proposed method, named Adversarial Prompt Tuning (APT), is effective while being both computationally and data efficient. Extensive experiments are conducted across 15 datasets and 4 data sparsity schemes (from 1-shot to full training data settings) to show APT's superiority over hand-engineered prompts and other state-of-the-art adaption methods. APT demonstrated excellent abilities in terms of the in-distribution performance and the generalization under input distribution shift and across datasets. Surprisingly, by simply adding one learned word to the prompts, APT can significantly boost the accuracy and robustness (epsilon=4/255) over the hand-engineered prompts by +13% and +8.5% on average respectively. The improvement further increases, in our most effective setting, to +26.4% for accuracy and +16.7% for robustness. Code is available at https://github.com/TreeLLi/APT.
Primary and Secondary Factor Consistency as Domain Knowledge to Guide Happiness Computing in Online Assessment
Wu, Xiaohua, Li, Lin, Tao, Xiaohui, Xing, Frank, Yuan, Jingling
Happiness computing based on large-scale online web data and machine learning methods is an emerging research topic that underpins a range of issues, from personal growth to social stability. Many advanced Machine Learning (ML) models with explanations are used to compute the happiness online assessment while maintaining high accuracy of results. However, domain knowledge constraints, such as the primary and secondary relations of happiness factors, are absent from these models, which limits the association between computing results and the right reasons for why they occurred. This article attempts to provide new insights into the explanation consistency from an empirical study perspective. Then we study how to represent and introduce domain knowledge constraints to make ML models more trustworthy. We achieve this through: (1) proving that multiple prediction models with additive factor attributions will have the desirable property of primary and secondary relations consistency, and (2) showing that factor relations with quantity can be represented as an importance distribution for encoding domain knowledge. Factor explanation difference is penalized by the Kullback-Leibler divergence-based loss among computing models. Experimental results using two online web datasets show that domain knowledge of stable factor relations exists. Using this knowledge not only improves happiness computing accuracy but also reveals more significative happiness factors for assisting decisions well.
Adaptive Multi-Agent Deep Reinforcement Learning for Timely Healthcare Interventions
Shaik, Thanveer, Tao, Xiaohui, Li, Lin, Xie, Haoran, Dai, Hong-Ning, Yong, Jianming
Effective patient monitoring is vital for timely interventions and improved healthcare outcomes. Traditional monitoring systems often struggle to handle complex, dynamic environments with fluctuating vital signs, leading to delays in identifying critical conditions. To address this challenge, we propose a novel AI-driven patient monitoring framework using multi-agent deep reinforcement learning (DRL). Our approach deploys multiple learning agents, each dedicated to monitoring a specific physiological feature, such as heart rate, respiration, and temperature. These agents interact with a generic healthcare monitoring environment, learn the patients' behaviour patterns, and make informed decisions to alert the corresponding Medical Emergency Teams (METs) based on the level of emergency estimated. In this study, we evaluate the performance of the proposed multi-agent DRL framework using real-world physiological and motion data from two datasets: PPG-DaLiA and WESAD. We compare the results with several baseline models, including Q-Learning, PPO, Actor-Critic, Double DQN, and DDPG, as well as monitoring frameworks like WISEML and CA-MAQL. Our experiments demonstrate that the proposed DRL approach outperforms all other baseline models, achieving more accurate monitoring of patient's vital signs. Furthermore, we conduct hyperparameter optimization to fine-tune the learning process of each agent. By optimizing hyperparameters, we enhance the learning rate and discount factor, thereby improving the agents' overall performance in monitoring patient health status.