Plotting

 Li, Jingyi


Multi-agent Application System in Office Collaboration Scenarios

arXiv.org Artificial Intelligence

This paper introduces a multi-agent application system designed to enhance office collaboration efficiency and work quality. The system integrates artificial intelligence, machine learning, and natural language processing technologies, achieving functionalities such as task allocation, progress monitoring, and information sharing. The agents within the system are capable of providing personalized collaboration support based on team members' needs and incorporate data analysis tools to improve decision-making quality. The paper also proposes an intelligent agent architecture that separates Plan and Solver, and through techniques such as multi-turn query rewriting and business tool retrieval, it enhances the agent's multi-intent and multi-turn dialogue capabilities. Furthermore, the paper details the design of tools and multi-turn dialogue in the context of office collaboration scenarios, and validates the system's effectiveness through experiments and evaluations. Ultimately, the system has demonstrated outstanding performance in real business applications, particularly in query understanding, task planning, and tool calling. Looking forward, the system is expected to play a more significant role in addressing complex interaction issues within dynamic environments and large-scale multi-agent systems.


Constructing a Norm for Children's Scientific Drawing: Distribution Features Based on Semantic Similarity of Large Language Models

arXiv.org Artificial Intelligence

The use of children's drawings to examining their conceptual understanding has been proven to be an effective method, but there are two major problems with previous research: 1. The content of the drawings heavily relies on the task, and the ecological validity of the conclusions is low; 2. The interpretation of drawings relies too much on the subjective feelings of the researchers. To address this issue, this study uses the Large Language Model (LLM) to identify 1420 children's scientific drawings (covering 9 scientific themes/concepts), and uses the word2vec algorithm to calculate their semantic similarity. The study explores whether there are consistent drawing representations for children on the same theme, and attempts to establish a norm for children's scientific drawings, providing a baseline reference for follow-up children's drawing research. The results show that the representation of most drawings has consistency, manifested as most semantic similarity greater than 0.8. At the same time, it was found that the consistency of the representation is independent of the accuracy (of LLM's recognition), indicating the existence of consistency bias. In the subsequent exploration of influencing factors, we used Kendall rank correlation coefficient to investigate the effects of Sample Size, Abstract Degree, and Focus Points on drawings, and used word frequency statistics to explore whether children represented abstract themes/concepts by reproducing what was taught in class.


Design and Optimization of Hierarchical Gradient Coding for Distributed Learning at Edge Devices

arXiv.org Artificial Intelligence

Edge computing has recently emerged as a promising paradigm to boost the performance of distributed learning by leveraging the distributed resources at edge nodes. Architecturally, the introduction of edge nodes adds an additional intermediate layer between the master and workers in the original distributed learning systems, potentially leading to more severe straggler effect. Recently, coding theory-based approaches have been proposed for stragglers mitigation in distributed learning, but the majority focus on the conventional workers-master architecture. In this paper, along a different line, we investigate the problem of mitigating the straggler effect in hierarchical distributed learning systems with an additional layer composed of edge nodes. Technically, we first derive the fundamental trade-off between the computational loads of workers and the stragglers tolerance. Then, we propose a hierarchical gradient coding framework, which provides better stragglers mitigation, to achieve the derived computational trade-off. To further improve the performance of our framework in heterogeneous scenarios, we formulate an optimization problem with the objective of minimizing the expected execution time for each iteration in the learning process. We develop an efficient algorithm to mathematically solve the problem by outputting the optimum strategy. Extensive simulation results demonstrate the superiority of our schemes compared with conventional solutions.


IMFL-AIGC: Incentive Mechanism Design for Federated Learning Empowered by Artificial Intelligence Generated Content

arXiv.org Artificial Intelligence

Federated learning (FL) has emerged as a promising paradigm that enables clients to collaboratively train a shared global model without uploading their local data. To alleviate the heterogeneous data quality among clients, artificial intelligence-generated content (AIGC) can be leveraged as a novel data synthesis technique for FL model performance enhancement. Due to various costs incurred by AIGC-empowered FL (e.g., costs of local model computation and data synthesis), however, clients are usually reluctant to participate in FL without adequate economic incentives, which leads to an unexplored critical issue for enabling AIGC-empowered FL. To fill this gap, we first devise a data quality assessment method for data samples generated by AIGC and rigorously analyze the convergence performance of FL model trained using a blend of authentic and AI-generated data samples. We then propose a data quality-aware incentive mechanism to encourage clients' participation. In light of information asymmetry incurred by clients' private multi-dimensional attributes, we investigate clients' behavior patterns and derive the server's optimal incentive strategies to minimize server's cost in terms of both model accuracy loss and incentive payments for both complete and incomplete information scenarios. Numerical results demonstrate that our proposed mechanism exhibits highest training accuracy and reduces up to 53.34% of the server's cost with real-world datasets, compared with existing benchmark mechanisms.


The Multi-fingered Kinematic Model for Dual-arm Manipulation

arXiv.org Artificial Intelligence

A planar kinematic model in the hand-object coordinates system for bimanual manipulation is presented. It can compute and determine the fingers configurations. In our experiment, the desired positions, as the model inputs are successfully generated valid joints values for bimanual manipulation. Abstract This paper presents the planar finger kinematic model for dual-arm robot to determine manipulation strategies. The first step is to model based on planar geometric features of the coordinated and rolling motion so that the robot can select the fingers configurations. For the hand-object model, we consider the distances between object and hands as the constraints. The second step is to seek the appropriate values of finger joints based on their positions samples which are randomly generated. Here the robot selects these positions according to the displacements of each joint and the k means clustering. The simulation shows that the selected solutions for the manipulation are all in the finger work space.


The Hand-object Kinematic Model for Bimanual Manipulation

arXiv.org Artificial Intelligence

This paper addresses the planar finger kinematics for seeking optimized manipulation strategies. The first step is to model based on geometric features of linear and rotation motion so that the robot can select the fingers configurations. This kinematic model considers the motion between hands and object. Based on 2-finger manipulation cases, this model can output the strategies for bimanual manipulation. For executing strategies, the second step is to seek the appropriate values of finger joints according to the ending orientation of fingers. The simulation shows that the computed solutions can complete the relative rotation and linear motion of unknown objects.


Roulette: A Semantic Privacy-Preserving Device-Edge Collaborative Inference Framework for Deep Learning Classification Tasks

arXiv.org Artificial Intelligence

Deep learning classifiers are crucial in the age of artificial intelligence. The device-edge-based collaborative inference has been widely adopted as an efficient framework for promoting its applications in IoT and 5G/6G networks. However, it suffers from accuracy degradation under non-i.i.d. data distribution and privacy disclosure. For accuracy degradation, direct use of transfer learning and split learning is high cost and privacy issues remain. For privacy disclosure, cryptography-based approaches lead to a huge overhead. Other lightweight methods assume that the ground truth is non-sensitive and can be exposed. But for many applications, the ground truth is the user's crucial privacy-sensitive information. In this paper, we propose a framework of Roulette, which is a task-oriented semantic privacy-preserving collaborative inference framework for deep learning classifiers. More than input data, we treat the ground truth of the data as private information. We develop a novel paradigm of split learning where the back-end DNN is frozen and the front-end DNN is retrained to be both a feature extractor and an encryptor. Moreover, we provide a differential privacy guarantee and analyze the hardness of ground truth inference attacks. To validate the proposed Roulette, we conduct extensive performance evaluations using realistic datasets, which demonstrate that Roulette can effectively defend against various attacks and meanwhile achieve good model accuracy. In a situation where the non-i.i.d. is very severe, Roulette improves the inference accuracy by 21\% averaged over benchmarks, while making the accuracy of discrimination attacks almost equivalent to random guessing.


Clustered Embedding Learning for Recommender Systems

arXiv.org Artificial Intelligence

In recent years, recommender systems have advanced rapidly, where embedding learning for users and items plays a critical role. A standard method learns a unique embedding vector for each user and item. However, such a method has two important limitations in real-world applications: 1) it is hard to learn embeddings that generalize well for users and items with rare interactions on their own; and 2) it may incur unbearably high memory costs when the number of users and items scales up. Existing approaches either can only address one of the limitations or have flawed overall performances. In this paper, we propose Clustered Embedding Learning (CEL) as an integrated solution to these two problems. CEL is a plug-and-play embedding learning framework that can be combined with any differentiable feature interaction model. It is capable of achieving improved performance, especially for cold users and items, with reduced memory cost. CEL enables automatic and dynamic clustering of users and items in a top-down fashion, where clustered entities jointly learn a shared embedding. The accelerated version of CEL has an optimal time complexity, which supports efficient online updates. Theoretically, we prove the identifiability and the existence of a unique optimal number of clusters for CEL in the context of nonnegative matrix factorization. Empirically, we validate the effectiveness of CEL on three public datasets and one business dataset, showing its consistently superior performance against current state-of-the-art methods. In particular, when incorporating CEL into the business model, it brings an improvement of $+0.6\%$ in AUC, which translates into a significant revenue gain; meanwhile, the size of the embedding table gets $2650$ times smaller.


Confiding in and Listening to Virtual Agents: The Effect of Personality

arXiv.org Artificial Intelligence

We present an intelligent virtual interviewer that engages with a user in a text-based conversation and automatically infers the user's psychological traits, such as personality. We investigate how the personality of a virtual interviewer influences a user's behavior from two perspectives: the user's willingness to confide in, and listen to, a virtual interviewer. We have developed two virtual interviewers with distinct personalities and deployed them in a real-world recruiting event. We present findings from completed interviews with 316 actual job applicants. Notably, users are more willing to confide in and listen to a virtual interviewer with a serious, assertive personality. Moreover, users' personality traits, inferred from their chat text, influence their perception of a virtual interviewer, and their willingness to confide in and listen to a virtual interviewer. Finally, we discuss the implications of our work on building hyper-personalized, intelligent agents based on user traits.