Plotting

 Li, Jiashuo


Step-Video-T2V Technical Report: The Practice, Challenges, and Future of Video Foundation Model

arXiv.org Artificial Intelligence

We present Step-Video-T2V, a state-of-the-art text-to-video pre-trained model with 30B parameters and the ability to generate videos up to 204 frames in length. A deep compression Variational Autoencoder, Video-VAE, is designed for video generation tasks, achieving 16x16 spatial and 8x temporal compression ratios, while maintaining exceptional video reconstruction quality. User prompts are encoded using two bilingual text encoders to handle both English and Chinese. A DiT with 3D full attention is trained using Flow Matching and is employed to denoise input noise into latent frames. A video-based DPO approach, Video-DPO, is applied to reduce artifacts and improve the visual quality of the generated videos. We also detail our training strategies and share key observations and insights. Step-Video-T2V's performance is evaluated on a novel video generation benchmark, Step-Video-T2V-Eval, demonstrating its state-of-the-art text-to-video quality when compared with both open-source and commercial engines. Additionally, we discuss the limitations of current diffusion-based model paradigm and outline future directions for video foundation models. We make both Step-Video-T2V and Step-Video-T2V-Eval available at https://github.com/stepfun-ai/Step-Video-T2V. The online version can be accessed from https://yuewen.cn/videos as well. Our goal is to accelerate the innovation of video foundation models and empower video content creators.


Dynamic Integration of Task-Specific Adapters for Class Incremental Learning

arXiv.org Artificial Intelligence

Non-exemplar class Incremental Learning (NECIL) enables models to continuously acquire new classes without retraining from scratch and storing old task exemplars, addressing privacy and storage issues. However, the absence of data from earlier tasks exacerbates the challenge of catastrophic forgetting in NECIL. In this paper, we propose a novel framework called Dynamic Integration of task-specific Adapters (DIA), which comprises two key components: Task-Specific Adapter Integration (TSAI) and Patch-Level Model Alignment. TSAI boosts compositionality through a patch-level adapter integration strategy, which provides a more flexible compositional solution while maintaining low computation costs. Patch-Level Model Alignment maintains feature consistency and accurate decision boundaries via two specialized mechanisms: Patch-Level Distillation Loss (PDL) and Patch-Level Feature Reconstruction method (PFR). Specifically, the PDL preserves feature-level consistency between successive models by implementing a distillation loss based on the contributions of patch tokens to new class learning. The PFR facilitates accurate classifier alignment by reconstructing old class features from previous tasks that adapt to new task knowledge. Extensive experiments validate the effectiveness of our DIA, revealing significant improvements on benchmark datasets in the NECIL setting, maintaining an optimal balance between computational complexity and accuracy. The full code implementation will be made publicly available upon the publication of this paper.