Plotting

 Li, Jianhua


AuditVotes: A Framework Towards More Deployable Certified Robustness for Graph Neural Networks

arXiv.org Artificial Intelligence

Despite advancements in Graph Neural Networks (GNNs), adaptive attacks continue to challenge their robustness. Certified robustness based on randomized smoothing has emerged as a promising solution, offering provable guarantees that a model's predictions remain stable under adversarial perturbations within a specified range. However, existing methods face a critical trade-off between accuracy and robustness, as achieving stronger robustness requires introducing greater noise into the input graph. This excessive randomization degrades data quality and disrupts prediction consistency, limiting the practical deployment of certifiably robust GNNs in real-world scenarios where both accuracy and robustness are essential. To address this challenge, we propose \textbf{AuditVotes}, the first framework to achieve both high clean accuracy and certifiably robust accuracy for GNNs. It integrates randomized smoothing with two key components, \underline{au}gmentation and con\underline{dit}ional smoothing, aiming to improve data quality and prediction consistency. The augmentation, acting as a pre-processing step, de-noises the randomized graph, significantly improving data quality and clean accuracy. The conditional smoothing, serving as a post-processing step, employs a filtering function to selectively count votes, thereby filtering low-quality predictions and improving voting consistency. Extensive experimental results demonstrate that AuditVotes significantly enhances clean accuracy, certified robustness, and empirical robustness while maintaining high computational efficiency. Notably, compared to baseline randomized smoothing, AuditVotes improves clean accuracy by $437.1\%$ and certified accuracy by $409.3\%$ when the attacker can arbitrarily insert $20$ edges on the Cora-ML datasets, representing a substantial step toward deploying certifiably robust GNNs in real-world applications.


OpticGAI: Generative AI-aided Deep Reinforcement Learning for Optical Networks Optimization

arXiv.org Artificial Intelligence

Deep Reinforcement Learning (DRL) is regarded as a promising tool for optical network optimization. However, the flexibility and efficiency of current DRL-based solutions for optical network optimization require further improvement. Currently, generative models have showcased their significant performance advantages across various domains. In this paper, we introduce OpticGAI, the AI-generated policy design paradigm for optical networks. In detail, it is implemented as a novel DRL framework that utilizes generative models to learn the optimal policy network. Furthermore, we assess the performance of OpticGAI on two NP-hard optical network problems, Routing and Wavelength Assignment (RWA) and dynamic Routing, Modulation, and Spectrum Allocation (RMSA), to show the feasibility of the AI-generated policy paradigm. Simulation results have shown that OpticGAI achieves the highest reward and the lowest blocking rate of both RWA and RMSA problems. OpticGAI poses a promising direction for future research on generative AI-enhanced flexible optical network optimization.


Graph Neural Backdoor: Fundamentals, Methodologies, Applications, and Future Directions

arXiv.org Artificial Intelligence

Graph Neural Networks (GNNs) have significantly advanced various downstream graph-relevant tasks, encompassing recommender systems, molecular structure prediction, social media analysis, etc. Despite the boosts of GNN, recent research has empirically demonstrated its potential vulnerability to backdoor attacks, wherein adversaries employ triggers to poison input samples, inducing GNN to adversary-premeditated malicious outputs. This is typically due to the controlled training process, or the deployment of untrusted models, such as delegating model training to third-party service, leveraging external training sets, and employing pre-trained models from online sources. Although there's an ongoing increase in research on GNN backdoors, comprehensive investigation into this field is lacking. To bridge this gap, we propose the first survey dedicated to GNN backdoors. We begin by outlining the fundamental definition of GNN, followed by the detailed summarization and categorization of current GNN backdoor attacks and defenses based on their technical characteristics and application scenarios. Subsequently, the analysis of the applicability and use cases of GNN backdoors is undertaken. Finally, the exploration of potential research directions of GNN backdoors is presented. This survey aims to explore the principles of graph backdoors, provide insights to defenders, and promote future security research.


Trustworthy AI-Generative Content in Intelligent 6G Network: Adversarial, Privacy, and Fairness

arXiv.org Artificial Intelligence

AI-generated content (AIGC) models, represented by large language models (LLM), have brought revolutionary changes to the content generation fields. The high-speed and extensive 6G technology is an ideal platform for providing powerful AIGC mobile service applications, while future 6G mobile networks also need to support intelligent and personalized mobile generation services. However, the significant ethical and security issues of current AIGC models, such as adversarial attacks, privacy, and fairness, greatly affect the credibility of 6G intelligent networks, especially in ensuring secure, private, and fair AIGC applications. In this paper, we propose TrustGAIN, a novel paradigm for trustworthy AIGC in 6G networks, to ensure trustworthy large-scale AIGC services in future 6G networks. We first discuss the adversarial attacks and privacy threats faced by AIGC systems in 6G networks, as well as the corresponding protection issues. Subsequently, we emphasize the importance of ensuring the unbiasedness and fairness of the mobile generative service in future intelligent networks. In particular, we conduct a use case to demonstrate that TrustGAIN can effectively guide the resistance against malicious or generated false information. We believe that TrustGAIN is a necessary paradigm for intelligent and trustworthy 6G networks to support AIGC services, ensuring the security, privacy, and fairness of AIGC network services.


Multi-Agent RL-Based Industrial AIGC Service Offloading over Wireless Edge Networks

arXiv.org Artificial Intelligence

Currently, the generative model has garnered considerable attention due to its application in addressing the challenge of scarcity of abnormal samples in the industrial Internet of Things (IoT). However, challenges persist regarding the edge deployment of generative models and the optimization of joint edge AI-generated content (AIGC) tasks. In this paper, we focus on the edge optimization of AIGC task execution and propose GMEL, a generative model-driven industrial AIGC collaborative edge learning framework. This framework aims to facilitate efficient few-shot learning by leveraging realistic sample synthesis and edge-based optimization capabilities. First, a multi-task AIGC computational offloading model is presented to ensure the efficient execution of heterogeneous AIGC tasks on edge servers. Then, we propose an attention-enhanced multi-agent reinforcement learning (AMARL) algorithm aimed at refining offloading policies within the IoT system, thereby supporting generative model-driven edge learning. Finally, our experimental results demonstrate the effectiveness of the proposed algorithm in optimizing the total system latency of the edge-based AIGC task completion.


Spikewhisper: Temporal Spike Backdoor Attacks on Federated Neuromorphic Learning over Low-power Devices

arXiv.org Artificial Intelligence

Federated neuromorphic learning (FedNL) leverages event-driven spiking neural networks and federated learning frameworks to effectively execute intelligent analysis tasks over amounts of distributed low-power devices but also perform vulnerability to poisoning attacks. The threat of backdoor attacks on traditional deep neural networks typically comes from time-invariant data. However, in FedNL, unknown threats may be hidden in time-varying spike signals. In this paper, we start to explore a novel vulnerability of FedNL-based systems with the concept of time division multiplexing, termed Spikewhisper, which allows attackers to evade detection as much as possible, as multiple malicious clients can imperceptibly poison with different triggers at different timeslices. In particular, the stealthiness of Spikewhisper is derived from the time-domain divisibility of global triggers, in which each malicious client pastes only one local trigger to a certain timeslice in the neuromorphic sample, and also the polarity and motion of each local trigger can be configured by attackers. Extensive experiments based on two different neuromorphic datasets demonstrate that the attack success rate of Spikewispher is higher than the temporally centralized attacks. Besides, it is validated that the effect of Spikewispher is sensitive to the trigger duration.


Toward the Tradeoffs between Privacy, Fairness and Utility in Federated Learning

arXiv.org Artificial Intelligence

Federated Learning (FL) is a novel privacy-protection distributed machine learning paradigm that guarantees user privacy and prevents the risk of data leakage due to the advantage of the client's local training. Researchers have struggled to design fair FL systems that ensure fairness of results. However, the interplay between fairness and privacy has been less studied. Increasing the fairness of FL systems can have an impact on user privacy, while an increase in user privacy can affect fairness. In this work, on the client side, we use the fairness metrics, such as Demographic Parity (DemP), Equalized Odds (EOs), and Disparate Impact (DI), to construct the local fair model. To protect the privacy of the client model, we propose a privacy-protection fairness FL method. The results show that the accuracy of the fair model with privacy increases because privacy breaks the constraints of the fairness metrics. In our experiments, we conclude the relationship between privacy, fairness and utility, and there is a tradeoff between these.


From Cluster Assumption to Graph Convolution: Graph-based Semi-Supervised Learning Revisited

arXiv.org Artificial Intelligence

Graph-based semi-supervised learning (GSSL) has long been a hot research topic. Traditional methods are generally shallow learners, based on the cluster assumption. Recently, graph convolutional networks (GCNs) have become the predominant techniques for their promising performance. In this paper, we theoretically discuss the relationship between these two types of methods in a unified optimization framework. One of the most intriguing findings is that, unlike traditional ones, typical GCNs may not jointly consider the graph structure and label information at each layer. Motivated by this, we further propose three simple but powerful graph convolution methods. The first is a supervised method OGC which guides the graph convolution process with labels. The others are two unsupervised methods: GGC and its multi-scale version GGCM, both aiming to preserve the graph structure information during the convolution process. Finally, we conduct extensive experiments to show the effectiveness of our methods.


Leveraging AI and Intelligent Reflecting Surface for Energy-Efficient Communication in 6G IoT

arXiv.org Artificial Intelligence

The ever-increasing data traffic, various delay-sensitive services, and the massive deployment of energy-limited Internet of Things (IoT) devices have brought huge challenges to the current communication networks, motivating academia and industry to move to the sixth-generation (6G) network. With the powerful capability of data transmission and processing, 6G is considered as an enabler for IoT communication with low latency and energy cost. In this paper, we propose an artificial intelligence (AI) and intelligent reflecting surface (IRS) empowered energy-efficiency communication system for 6G IoT. First, we design a smart and efficient communication architecture including the IRS-aided data transmission and the AI-driven network resource management mechanisms. Second, an energy efficiency-maximizing model under given transmission latency for 6G IoT system is formulated, which jointly optimizes the settings of all communication participants, i.e. IoT transmission power, IRS-reflection phase shift, and BS detection matrix. Third, a deep reinforcement learning (DRL) empowered network resource control and allocation scheme is proposed to solve the formulated optimization model. Based on the network and channel status, the DRL-enabled scheme facilities the energy-efficiency and low-latency communication. Finally, experimental results verified the effectiveness of our proposed communication system for 6G IoT.