Not enough data to create a plot.
Try a different view from the menu above.
Li, Chuan
PromptDistill: Query-based Selective Token Retention in Intermediate Layers for Efficient Large Language Model Inference
Jin, Weisheng, Song, Maojia, Pala, Tej Deep, Chia, Yew Ken, Zadeh, Amir, Li, Chuan, Poria, Soujanya
As large language models (LLMs) tackle increasingly complex tasks and longer documents, their computational and memory costs during inference become a major bottleneck. To address this, we propose PromptDistill, a novel, training-free method that improves inference efficiency while preserving generation quality. PromptDistill identifies and retains the most informative tokens by leveraging attention interactions in early layers, preserving their hidden states while reducing the computational burden in later layers. This allows the model to focus on essential contextual information without fully processing all tokens. Unlike previous methods such as H2O and SnapKV, which perform compression only after processing the entire input, or GemFilter, which selects a fixed portion of the initial prompt without considering contextual dependencies, PromptDistill dynamically allocates computational resources to the most relevant tokens while maintaining a global awareness of the input. Experiments using our method and baseline approaches with base models such as LLaMA 3.1 8B Instruct, Phi 3.5 Mini Instruct, and Qwen2 7B Instruct on benchmarks including LongBench, InfBench, and Needle in a Haystack demonstrate that PromptDistill significantly improves efficiency while having minimal impact on output quality compared to the original models. With a single-stage selection strategy, PromptDistill effectively balances performance and efficiency, outperforming prior methods like GemFilter, H2O, and SnapKV due to its superior ability to retain essential information. Specifically, compared to GemFilter, PromptDistill achieves an overall $1\%$ to $5\%$ performance improvement while also offering better time efficiency. Additionally, we explore multi-stage selection, which further improves efficiency while maintaining strong generation performance.
Scalable Language Models with Posterior Inference of Latent Thought Vectors
Kong, Deqian, Zhao, Minglu, Xu, Dehong, Pang, Bo, Wang, Shu, Honig, Edouardo, Si, Zhangzhang, Li, Chuan, Xie, Jianwen, Xie, Sirui, Wu, Ying Nian
We propose a novel family of language models, Latent-Thought Language Models (LTMs), which incorporate explicit latent thought vectors that follow an explicit prior model in latent space. These latent thought vectors guide the autoregressive generation of ground tokens through a Transformer decoder. Training employs a dual-rate optimization process within the classical variational Bayes framework: fast learning of local variational parameters for the posterior distribution of latent vectors, and slow learning of global decoder parameters. Empirical studies reveal that LTMs possess additional scaling dimensions beyond traditional LLMs, yielding a structured design space. Higher sample efficiency can be achieved by increasing training compute per token, with further gains possible by trading model size for more inference steps. Designed based on these scaling properties, LTMs demonstrate superior sample and parameter efficiency compared to conventional autoregressive models and discrete diffusion models. They significantly outperform these counterparts in validation perplexity and zero-shot language modeling. Additionally, LTMs exhibit emergent few-shot in-context reasoning capabilities that scale with model and latent size, and achieve competitive performance in conditional and unconditional text generation.
Utilizing Large Language Models for Natural Interface to Pharmacology Databases
Lu, Hong, Li, Chuan, Li, Yinheng, Zhao, Jie
The drug development process necessitates that pharmacologists undertake various tasks, such as reviewing literature, formulating hypotheses, designing experiments, and interpreting results. Each stage requires accessing and querying vast amounts of information. In this abstract, we introduce a Large Language Model (LLM)-based Natural Language Interface designed to interact with structured information stored in databases. Our experiments demonstrate the feasibility and effectiveness of the proposed framework. This framework can generalize to query a wide range of pharmaceutical data and knowledge bases.
RenderNet: A deep convolutional network for differentiable rendering from 3D shapes
Nguyen-Phuoc, Thu H., Li, Chuan, Balaban, Stephen, Yang, Yongliang
Traditional computer graphics rendering pipelines are designed for procedurally generating 2D images from 3D shapes with high performance. The nondifferentiability due to discrete operations (such as visibility computation) makes it hard to explicitly correlate rendering parameters and the resulting image, posing a significant challenge for inverse rendering tasks. Recent work on differentiable rendering achieves differentiability either by designing surrogate gradients for non-differentiable operations or via an approximate but differentiable renderer. These methods, however, are still limited when it comes to handling occlusion, and restricted to particular rendering effects. We present RenderNet, a differentiable rendering convolutional network with a novel projection unit that can render 2D images from 3D shapes. Spatial occlusion and shading calculation are automatically encoded in the network. Our experiments show that RenderNet can successfully learn to implement different shaders, and can be used in inverse rendering tasks to estimate shape, pose, lighting and texture from a single image.
RenderNet: A deep convolutional network for differentiable rendering from 3D shapes
Nguyen-Phuoc, Thu H., Li, Chuan, Balaban, Stephen, Yang, Yongliang
Traditional computer graphics rendering pipelines are designed for procedurally generating 2D images from 3D shapes with high performance. The nondifferentiability due to discrete operations (such as visibility computation) makes it hard to explicitly correlate rendering parameters and the resulting image, posing a significant challenge for inverse rendering tasks. Recent work on differentiable rendering achieves differentiability either by designing surrogate gradients for non-differentiable operations or via an approximate but differentiable renderer. These methods, however, are still limited when it comes to handling occlusion, and restricted to particular rendering effects. We present RenderNet, a differentiable rendering convolutional network with a novel projection unit that can render 2D images from 3D shapes. Spatial occlusion and shading calculation are automatically encoded in the network. Our experiments show that RenderNet can successfully learn to implement different shaders, and can be used in inverse rendering tasks to estimate shape, pose, lighting and texture from a single image.