Not enough data to create a plot.
Try a different view from the menu above.
Lewis, Mike
Hierarchical Decision Making by Generating and Following Natural Language Instructions
Hu, Hengyuan, Yarats, Denis, Gong, Qucheng, Tian, Yuandong, Lewis, Mike
We explore using latent natural language instructions as an expressive and compositional representation of complex actions for hierarchical decision making. Rather than directly selecting micro-actions, our agent first generates a latent plan in natural language, which is then executed by a separate model. We introduce a challenging real-time strategy game environment in which the actions of a large number of units must be coordinated across long time scales. We gather a dataset of 76 thousand pairs of instructions and executions from human play, and train instructor and executor models. Experiments show that models using natural language as a latent variable significantly outperform models that directly imitate human actions.
Hierarchical Decision Making by Generating and Following Natural Language Instructions
Hu, Hengyuan, Yarats, Denis, Gong, Qucheng, Tian, Yuandong, Lewis, Mike
We explore using latent natural language instructions as an expressive and compositional representation of complex actions for hierarchical decision making. Rather than directly selecting micro-actions, our agent first generates a latent plan in natural language, which is then executed by a separate model. We introduce a challenging real-time strategy game environment in which the actions of a large number of units must be coordinated across long time scales. We gather a dataset of 76 thousand pairs of instructions and executions from human play, and train instructor and executor models. Experiments show that models using natural language as a latent variable significantly outperform models that directly imitate human actions. The compositional structure of language proves crucial to its effectiveness for action representation. We also release our code, models and data.
MelNet: A Generative Model for Audio in the Frequency Domain
Vasquez, Sean, Lewis, Mike
Capturing high-level structure in audio waveforms is challenging because a single second of audio spans tens of thousands of timesteps. While long-range dependencies are difficult to model directly in the time domain, we show that they can be more tractably modelled in two-dimensional time-frequency representations such as spectrograms. By leveraging this representational advantage, in conjunction with a highly expressive probabilistic model and a multiscale generation procedure, we design a model capable of generating high-fidelity audio samples which capture structure at timescales that time-domain models have yet to achieve. We apply our model to a variety of audio generation tasks, including unconditional speech generation, music generation, and text-to-speech synthesis---showing improvements over previous approaches in both density estimates and human judgments.
Improving Semantic Parsing for Task Oriented Dialog
Einolghozati, Arash, Pasupat, Panupong, Gupta, Sonal, Shah, Rushin, Mohit, Mrinal, Lewis, Mike, Zettlemoyer, Luke
Semantic parsing using hierarchical representations has recently been proposed for task oriented dialog with promising results [Gupta et al 2018]. In this paper, we present three different improvements to the model: contextualized embeddings, ensembling, and pairwise re-ranking based on a language model. We taxonomize the errors possible for the hierarchical representation, such as wrong top intent, missing spans or split spans, and show that the three approaches correct different kinds of errors. The best model combines the three techniques and gives 6.4% better exact match accuracy than the state-of-the-art, with an error reduction of 33%, resulting in a new state-of-the-art result on the Task Oriented Parsing (TOP) dataset.
Community Regularization of Visually-Grounded Dialog
Agarwal, Akshat, Gurumurthy, Swaminathan, Sharma, Vasu, Lewis, Mike, Sycara, Katia
The task of conducting visually grounded dialog involves learning goal-oriented cooperative dialog between autonomous agents who exchange information about a scene through several rounds of questions and answers in natural language. We posit that requiring artificial agents to adhere to the rules of human language, while also requiring them to maximize information exchange through dialog is an ill-posed problem. We observe that humans do not stray from a common language because they are social creatures who live in communities, and have to communicate with many people everyday, so it is far easier to stick to a common language even at the cost of some efficiency loss. Using this as inspiration, we propose and evaluate a multi-agent community-based dialog framework where each agent interacts with, and learns from, multiple agents, and show that this community-enforced regularization results in more relevant and coherent dialog (as judged by human evaluators) without sacrificing task performance (as judged by quantitative metrics).
Neural Compositional Denotational Semantics for Question Answering
Gupta, Nitish, Lewis, Mike
Answering compositional questions requiring multi-step reasoning is challenging. We introduce an end-to-end differentiable model for interpreting questions about a knowledge graph (KG), which is inspired by formal approaches to semantics. Each span of text is represented by a denotation in a KG and a vector that captures ungrounded aspects of meaning. Learned composition modules recursively combine constituent spans, culminating in a grounding for the complete sentence which answers the question. For example, to interpret "not green", the model represents "green" as a set of KG entities and "not" as a trainable ungrounded vector---and then uses this vector to parameterize a composition function that performs a complement operation. For each sentence, we build a parse chart subsuming all possible parses, allowing the model to jointly learn both the composition operators and output structure by gradient descent from end-task supervision. The model learns a variety of challenging semantic operators, such as quantifiers, disjunctions and composed relations, and infers latent syntactic structure. It also generalizes well to longer questions than seen in its training data, in contrast to RNN, its tree-based variants, and semantic parsing baselines.
Evaluating Visual Reasoning through Grounded Language Understanding
Suhr, Alane (Cornell University) | Lewis, Mike (Facebook) | Yeh, James (Cornell University) | Artzi, Yoav
Autonomous systems that understand natural language must reason about complex language and visual observations. Key to making progress towards such systems is the availability of benchmark datasets and tasks. We introduce the Cornell Natural Language Visual Reasoning (NLVR) corpus, which targets reasoning skills like counting, comparisons, and set theory. NLVR contains 92,244 examples of natural language statements paired with synthetic images and annotated with boolean values for the simple task of determining whether the sentence is true or false about the image. While it presents a simple task, NLVR has been developed to challenge systems with diverse linguistic phenomena and complex reasoning. Linguistic analysis confirms that NLVR presents diversity and complexity beyond what is provided by contemporary benchmarks. Empirical evaluation of several methods further demonstrates the open challenges NLVR presents.