Goto

Collaborating Authors

 Lemercier, Jean-Marie


A neural network-supported two-stage algorithm for lightweight dereverberation on hearing devices

arXiv.org Artificial Intelligence

A two-stage lightweight online dereverberation algorithm for hearing devices is presented in this paper. The approach combines a multi-channel multi-frame linear filter with a single-channel single-frame post-filter. Both components rely on power spectral density (PSD) estimates provided by deep neural networks (DNNs). By deriving new metrics analyzing the dereverberation performance in various time ranges, we confirm that directly optimizing for a criterion at the output of the multi-channel linear filtering stage results in a more efficient dereverberation as compared to placing the criterion at the output of the DNN to optimize the PSD estimation. More concretely, we show that training this stage end-to-end helps further remove the reverberation in the range accessible to the filter, thus increasing the early-to-moderate reverberation ratio. We argue and demonstrate that it can then be well combined with a post-filtering stage to efficiently suppress the residual late reverberation, thereby increasing the early-to-final reverberation ratio. This proposed two-stage procedure is shown to be both very effective in terms of dereverberation performance and computational demands, as compared to, e.g., recent state-of-the-art DNN approaches. Furthermore, the proposed two-stage system can be adapted to the needs of different types of hearing-device users by controlling the amount of reduction of early reflections.


Extending DNN-based Multiplicative Masking to Deep Subband Filtering for Improved Dereverberation

arXiv.org Artificial Intelligence

In this paper, we present a scheme for extending deep neural network-based multiplicative maskers to deep subband filters for speech restoration in the time-frequency domain. The resulting method can be generically applied to any deep neural network providing masks in the time-frequency domain, while requiring only few more trainable parameters and a computational overhead that is negligible for state-of-the-art neural networks. We demonstrate that the resulting deep subband filtering scheme outperforms multiplicative masking for dereverberation, while leaving the denoising performance virtually the same. We argue that this is because deep subband filtering in the time-frequency domain fits the subband approximation often assumed in the dereverberation literature, whereas multiplicative masking corresponds to the narrowband approximation generally employed for denoising.


Analysing Diffusion-based Generative Approaches versus Discriminative Approaches for Speech Restoration

arXiv.org Artificial Intelligence

Diffusion-based generative models have had a high impact on the computer vision and speech processing communities these past years. Besides data generation tasks, they have also been employed for data restoration tasks like speech enhancement and dereverberation. While discriminative models have traditionally been argued to be more powerful e.g. for speech enhancement, generative diffusion approaches have recently been shown to narrow this performance gap considerably. In this paper, we systematically compare the performance of generative diffusion models and discriminative approaches on different speech restoration tasks. For this, we extend our prior contributions on diffusion-based speech enhancement in the complex time-frequency domain to the task of bandwith extension. We then compare it to a discriminatively trained neural network with the same network architecture on three restoration tasks, namely speech denoising, dereverberation and bandwidth extension. We observe that the generative approach performs globally better than its discriminative counterpart on all tasks, with the strongest benefit for non-additive distortion models, like in dereverberation and bandwidth extension. Code and audio examples can be found online at https://uhh.de/inf-sp-sgmsemultitask


StoRM: A Diffusion-based Stochastic Regeneration Model for Speech Enhancement and Dereverberation

arXiv.org Artificial Intelligence

Diffusion models have shown a great ability at bridging the performance gap between predictive and generative approaches for speech enhancement. We have shown that they may even outperform their predictive counterparts for non-additive corruption types or when they are evaluated on mismatched conditions. However, diffusion models suffer from a high computational burden, mainly as they require to run a neural network for each reverse diffusion step, whereas predictive approaches only require one pass. As diffusion models are generative approaches they may also produce vocalizing and breathing artifacts in adverse conditions. In comparison, in such difficult scenarios, predictive models typically do not produce such artifacts but tend to distort the target speech instead, thereby degrading the speech quality. In this work, we present a stochastic regeneration approach where an estimate given by a predictive model is provided as a guide for further diffusion. We show that the proposed approach uses the predictive model to remove the vocalizing and breathing artifacts while producing very high quality samples thanks to the diffusion model, even in adverse conditions. We further show that this approach enables to use lighter sampling schemes with fewer diffusion steps without sacrificing quality, thus lifting the computational burden by an order of magnitude. Source code and audio examples are available online (https://uhh.de/inf-sp-storm).