Not enough data to create a plot.
Try a different view from the menu above.
Lee, Su-In
Efficient Shapley Values for Attributing Global Properties of Diffusion Models to Data Group
Lin, Chris, Lu, Mingyu, Kim, Chanwoo, Lee, Su-In
As diffusion models are deployed in real-world settings, data attribution is needed to ensure fair acknowledgment for contributors of high-quality training data and to identify sources of harmful content. Previous work focuses on identifying individual training samples important for the generation of a given image. However, instead of focusing on a given generated image, some use cases require understanding global properties of the distribution learned by a diffusion model (e.g., demographic diversity). Furthermore, training data for diffusion models are often contributed in groups rather than separately (e.g., multiple artworks from the same artist). Hence, here we tackle the problem of attributing global properties of diffusion models to groups of training data. Specifically, we develop a method to efficiently estimate Shapley values by leveraging model pruning and fine-tuning. We empirically demonstrate the utility of our method with three use cases: (i) global image quality for a DDPM trained on a CIFAR dataset, (ii) demographic diversity for an LDM trained on CelebA-HQ, and (iii) overall aesthetic quality for a Stable Diffusion model LoRA-finetuned on Post-Impressionist artworks.
Stochastic Amortization: A Unified Approach to Accelerate Feature and Data Attribution
Covert, Ian, Kim, Chanwoo, Lee, Su-In, Zou, James, Hashimoto, Tatsunori
Many tasks in explainable machine learning, such as data valuation and feature attribution, perform expensive computation for each data point and can be intractable for large datasets. These methods require efficient approximations, and learning a network that directly predicts the desired output, which is commonly known as amortization, is a promising solution. However, training such models with exact labels is often intractable; we therefore explore training with noisy labels and find that this is inexpensive and surprisingly effective. Through theoretical analysis of the label noise and experiments with various models and datasets, we show that this approach significantly accelerates several feature attribution and data valuation methods, often yielding an order of magnitude speedup over existing approaches.
On the Robustness of Removal-Based Feature Attributions
Lin, Chris, Covert, Ian, Lee, Su-In
To explain predictions made by complex machine learning models, many feature attribution methods have been developed that assign importance scores to input features. Some recent work challenges the robustness of these methods by showing that they are sensitive to input and model perturbations, while other work addresses this issue by proposing robust attribution methods. However, previous work on attribution robustness has focused primarily on gradient-based feature attributions, whereas the robustness of removal-based attribution methods is not currently well understood. To bridge this gap, we theoretically characterize the robustness properties of removal-based feature attributions. Specifically, we provide a unified analysis of such methods and derive upper bounds for the difference between intact and perturbed attributions, under settings of both input and model perturbations. Our empirical results on synthetic and real-world data validate our theoretical results and demonstrate their practical implications, including the ability to increase attribution robustness by improving the model's Lipschitz regularity.
Feature Selection in the Contrastive Analysis Setting
Weinberger, Ethan, Covert, Ian, Lee, Su-In
Contrastive analysis (CA) refers to the exploration of variations uniquely enriched in a target dataset as compared to a corresponding background dataset generated from sources of variation that are irrelevant to a given task. For example, a biomedical data analyst may wish to find a small set of genes to use as a proxy for variations in genomic data only present among patients with a given disease (target) as opposed to healthy control subjects (background). However, as of yet the problem of feature selection in the CA setting has received little attention from the machine learning community. In this work we present contrastive feature selection (CFS), a method for performing feature selection in the CA setting. We motivate our approach with a novel information-theoretic analysis of representation learning in the CA setting, and we empirically validate CFS on a semi-synthetic dataset and four real-world biomedical datasets. We find that our method consistently outperforms previously proposed state-of-the-art supervised and fully unsupervised feature selection methods not designed for the CA setting. An open-source implementation of our method is available at https://github.com/suinleelab/CFS.
Estimating Conditional Mutual Information for Dynamic Feature Selection
Gadgil, Soham, Covert, Ian, Lee, Su-In
Dynamic feature selection, where we sequentially query features to make accurate predictions with a minimal budget, is a promising paradigm to reduce feature acquisition costs and provide transparency into a model's predictions. The problem is challenging, however, as it requires both predicting with arbitrary feature sets and learning a policy to identify valuable selections. Here, we take an information-theoretic perspective and prioritize features based on their mutual information with the response variable. The main challenge is implementing this policy, and we design a new approach that estimates the mutual information in a discriminative rather than generative fashion. Building on our approach, we then introduce several further improvements: allowing variable feature budgets across samples, enabling non-uniform feature costs, incorporating prior information, and exploring modern architectures to handle partial inputs. Our experiments show that our method provides consistent gains over recent methods across a variety of datasets.
Contrastive Corpus Attribution for Explaining Representations
Lin, Chris, Chen, Hugh, Kim, Chanwoo, Lee, Su-In
Despite the widespread use of unsupervised models, very few methods are designed to explain them. Most explanation methods explain a scalar model output. However, unsupervised models output representation vectors, the elements of which are not good candidates to explain because they lack semantic meaning. To bridge this gap, recent works defined a scalar explanation output: a dot product-based similarity in the representation space to the sample being explained (i.e., an explicand). Although this enabled explanations of unsupervised models, the interpretation of this approach can still be opaque because similarity to the explicand's representation may not be meaningful to humans. To address this, we propose contrastive corpus similarity, a novel and semantically meaningful scalar explanation output based on a reference corpus and a contrasting foil set of samples. We demonstrate that contrastive corpus similarity is compatible with many post-hoc feature attribution methods to generate COntrastive COrpus Attributions (COCOA) and quantitatively verify that features important to the corpus are identified. We showcase the utility of COCOA in two ways: (i) we draw insights by explaining augmentations of the same image in a contrastive learning setting (SimCLR); and (ii) we perform zero-shot object localization by explaining the similarity of image representations to jointly learned text representations (CLIP). Machine learning models based on deep neural networks are increasingly used in a diverse set of tasks including chess (Silver et al., 2018), protein folding (Jumper et al., 2021), and language translation (Jean et al., 2014). The majority of neural networks have many parameters, which impedes humans from understanding them (Lipton, 2018). To address this, many tools have been developed to understand supervised models in terms of their prediction (Lundberg & Lee, 2017; Wachter et al., 2017). In this supervised setting, the model maps features to labels (f: X Y), and explanations aim to understand the model's prediction of a label of interest. These explanations are interpretable, because the label of interest (e.g., mortality, an image class) is meaningful to humans (Figure 1a). In contrast, models trained in unsupervised settings map features to representations (f: X H). Unfortunately, the meaning of individual elements in the representation space is unknown in general.
Learning to Maximize Mutual Information for Dynamic Feature Selection
Covert, Ian, Qiu, Wei, Lu, Mingyu, Kim, Nayoon, White, Nathan, Lee, Su-In
Feature selection helps reduce data acquisition costs in ML, but the standard approach is to train models with static feature subsets. Here, we consider the dynamic feature selection (DFS) problem where a model sequentially queries features based on the presently available information. DFS is often addressed with reinforcement learning, but we explore a simpler approach of greedily selecting features based on their conditional mutual information. This method is theoretically appealing but requires oracle access to the data distribution, so we develop a learning approach based on amortized optimization. The proposed method is shown to recover the greedy policy when trained to optimality, and it outperforms numerous existing feature selection methods in our experiments, thus validating it as a simple but powerful approach for this problem.
Learning to Estimate Shapley Values with Vision Transformers
Covert, Ian, Kim, Chanwoo, Lee, Su-In
Transformers have become a default architecture in computer vision, but understanding what drives their predictions remains a challenging problem. Current explanation approaches rely on attention values or input gradients, but these provide a limited view of a model's dependencies. Shapley values offer a theoretically sound alternative, but their computational cost makes them impractical for large, high-dimensional models. In this work, we aim to make Shapley values practical for vision transformers (ViTs). To do so, we first leverage an attention masking approach to evaluate ViTs with partial information, and we then develop a procedure to generate Shapley value explanations via a separate, learned explainer model. Our experiments compare Shapley values to many baseline methods (e.g., attention rollout, GradCAM, LRP), and we find that our approach provides more accurate explanations than existing methods for ViTs. Transformers (Vaswani et al., 2017) were originally introduced for ...
FastSHAP: Real-Time Shapley Value Estimation
Jethani, Neil, Sudarshan, Mukund, Covert, Ian, Lee, Su-In, Ranganath, Rajesh
Shapley values are widely used to explain black-box models, but they are costly to calculate because they require many model evaluations. We introduce FastSHAP, a method for estimating Shapley values in a single forward pass using a learned explainer model. FastSHAP amortizes the cost of explaining many inputs via a learning approach inspired by the Shapley value's weighted least squares characterization, and it can be trained using standard stochastic gradient optimization. We compare FastSHAP to existing estimation approaches, revealing that it generates high-quality explanations with orders of magnitude speedup.
Pitfalls of Explainable ML: An Industry Perspective
Verma, Sahil, Lahiri, Aditya, Dickerson, John P., Lee, Su-In
As machine learning (ML) systems take a more prominent and central role in contributing to life-impacting decisions, ensuring their trustworthiness and accountability is of utmost importance. Explanations sit at the core of these desirable attributes of a ML system. The emerging field is frequently called ``Explainable AI (XAI)'' or ``Explainable ML.'' The goal of explainable ML is to intuitively explain the predictions of a ML system, while adhering to the needs to various stakeholders. Many explanation techniques were developed with contributions from both academia and industry. However, there are several existing challenges that have not garnered enough interest and serve as roadblocks to widespread adoption of explainable ML. In this short paper, we enumerate challenges in explainable ML from an industry perspective. We hope these challenges will serve as promising future research directions, and would contribute to democratizing explainable ML.