LeCun, Yann
Advancing human-centric AI for robust X-ray analysis through holistic self-supervised learning
Moutakanni, Théo, Bojanowski, Piotr, Chassagnon, Guillaume, Hudelot, Céline, Joulin, Armand, LeCun, Yann, Muckley, Matthew, Oquab, Maxime, Revel, Marie-Pierre, Vakalopoulou, Maria
AI Foundation models are gaining traction in various applications, including medical fields like radiology. However, medical foundation models are often tested on limited tasks, leaving their generalisability and biases unexplored. We present RayDINO, a large visual encoder trained by self-supervision on 873k chest X-rays. We compare RayDINO to previous state-of-the-art models across nine radiology tasks, from classification and dense segmentation to text generation, and provide an in depth analysis of population, age and sex biases of our model. Our findings suggest that self-supervision allows patient-centric AI proving useful in clinical workflows and interpreting X-rays holistically. With RayDINO and small task-specific adapters, we reach state-of-the-art results and improve generalization to unseen populations while mitigating bias, illustrating the true promise of foundation models: versatility and robustness.
EgoPet: Egomotion and Interaction Data from an Animal's Perspective
Bar, Amir, Bakhtiar, Arya, Tran, Danny, Loquercio, Antonio, Rajasegaran, Jathushan, LeCun, Yann, Globerson, Amir, Darrell, Trevor
Animals perceive the world to plan their actions and interact with other agents to accomplish complex tasks, demonstrating capabilities that are still unmatched by AI systems. To advance our understanding and reduce the gap between the capabilities of animals and AI systems, we introduce a dataset of pet egomotion imagery with diverse examples of simultaneous egomotion and multi-agent interaction. Current video datasets separately contain egomotion and interaction examples, but rarely both at the same time. In addition, EgoPet offers a radically distinct perspective from existing egocentric datasets of humans or vehicles. We define two in-domain benchmark tasks that capture animal behavior, and a third benchmark to assess the utility of EgoPet as a pretraining resource to robotic quadruped locomotion, showing that models trained from EgoPet outperform those trained from prior datasets.
Learning and Leveraging World Models in Visual Representation Learning
Garrido, Quentin, Assran, Mahmoud, Ballas, Nicolas, Bardes, Adrien, Najman, Laurent, LeCun, Yann
Joint-Embedding Predictive Architecture (JEPA) has emerged as a promising self-supervised approach that learns by leveraging a world model. While previously limited to predicting missing parts of an input, we explore how to generalize the JEPA prediction task to a broader set of corruptions. We introduce Image World Models, an approach that goes beyond masked image modeling and learns to predict the effect of global photometric transformations in latent space. We study the recipe of learning performant IWMs and show that it relies on three key aspects: conditioning, prediction difficulty, and capacity. Additionally, we show that the predictive world model learned by IWM can be adapted through finetuning to solve diverse tasks; a fine-tuned IWM world model matches or surpasses the performance of previous self-supervised methods. Finally, we show that learning with an IWM allows one to control the abstraction level of the learned representations, learning invariant representations such as contrastive methods, or equivariant representations such as masked image modelling.
Learning by Reconstruction Produces Uninformative Features For Perception
Balestriero, Randall, LeCun, Yann
Input space reconstruction is an attractive representation learning paradigm. Despite interpretability of the reconstruction and generation, we identify a misalignment between learning by reconstruction, and learning for perception. We show that the former allocates a model's capacity towards a subspace of the data explaining the observed variance--a subspace with uninformative features for the latter. For example, the supervised TinyImagenet task with images projected onto the top subspace explaining 90\% of the pixel variance can be solved with 45\% test accuracy. Using the bottom subspace instead, accounting for only 20\% of the pixel variance, reaches 55\% test accuracy. The features for perception being learned last explains the need for long training time, e.g., with Masked Autoencoders. Learning by denoising is a popular strategy to alleviate that misalignment. We prove that while some noise strategies such as masking are indeed beneficial, others such as additive Gaussian noise are not. Yet, even in the case of masking, we find that the benefits vary as a function of the mask's shape, ratio, and the considered dataset. While tuning the noise strategy without knowledge of the perception task seems challenging, we provide first clues on how to detect if a noise strategy is never beneficial regardless of the perception task.
Revisiting Feature Prediction for Learning Visual Representations from Video
Bardes, Adrien, Garrido, Quentin, Ponce, Jean, Chen, Xinlei, Rabbat, Michael, LeCun, Yann, Assran, Mahmoud, Ballas, Nicolas
This paper explores feature prediction as a stand-alone objective for unsupervised learning from video and introduces V-JEPA, a collection of vision models trained solely using a feature prediction objective, without the use of pretrained image encoders, text, negative examples, reconstruction, or other sources of supervision. The models are trained on 2 million videos collected from public datasets and are evaluated on downstream image and video tasks. Our results show that learning by predicting video features leads to versatile visual representations that perform well on both motion and appearance-based tasks, without adaption of the model's parameters; e.g., using a frozen backbone. Our largest model, a ViT-H/16 trained only on videos, obtains 81.9% on Kinetics-400, 72.2% on Something-Something-v2, and 77.9% on ImageNet1K.
G-Retriever: Retrieval-Augmented Generation for Textual Graph Understanding and Question Answering
He, Xiaoxin, Tian, Yijun, Sun, Yifei, Chawla, Nitesh V., Laurent, Thomas, LeCun, Yann, Bresson, Xavier, Hooi, Bryan
Given a graph with textual attributes, we enable users to `chat with their graph': that is, to ask questions about the graph using a conversational interface. In response to a user's questions, our method provides textual replies and highlights the relevant parts of the graph. While existing works integrate large language models (LLMs) and graph neural networks (GNNs) in various ways, they mostly focus on either conventional graph tasks (such as node, edge, and graph classification), or on answering simple graph queries on small or synthetic graphs. In contrast, we develop a flexible question-answering framework targeting real-world textual graphs, applicable to multiple applications including scene graph understanding, common sense reasoning, and knowledge graph reasoning. Toward this goal, we first develop our Graph Question Answering (GraphQA) benchmark with data collected from different tasks. Then, we propose our G-Retriever approach, which integrates the strengths of GNNs, LLMs, and Retrieval-Augmented Generation (RAG), and can be fine-tuned to enhance graph understanding via soft prompting. To resist hallucination and to allow for textual graphs that greatly exceed the LLM's context window size, G-Retriever performs RAG over a graph by formulating this task as a Prize-Collecting Steiner Tree optimization problem. Empirical evaluations show that our method outperforms baselines on textual graph tasks from multiple domains, scales well with larger graph sizes, and resists hallucination. (Our codes and datasets are available at: https://github.com/XiaoxinHe/G-Retriever.)
Fast and Exact Enumeration of Deep Networks Partitions Regions
Balestriero, Randall, LeCun, Yann
One fruitful formulation of Deep Networks (DNs) enabling their theoretical study and providing practical guidelines to practitioners relies on Piecewise Affine Splines. In that realm, a DN's input-mapping is expressed as per-region affine mapping where those regions are implicitly determined by the model's architecture and form a partition of their input space. That partition -- which is involved in all the results spanned from this line of research -- has so far only been computed on $2/3$-dimensional slices of the DN's input space or estimated by random sampling. In this paper, we provide the first parallel algorithm that does exact enumeration of the DN's partition regions. The proposed algorithm enables one to finally assess the closeness of the commonly employed approximations methods, e.g. based on random sampling of the DN input space. One of our key finding is that if one is only interested in regions with ``large'' volume, then uniform sampling of the space is highly efficient, but that if one is also interested in discovering the ``small'' regions of the partition, then uniform sampling is exponentially costly with the DN's input space dimension. On the other hand, our proposed method has complexity scaling linearly with input dimension and the number of regions.
Gradient-based Planning with World Models
S, Jyothir V, Jalagam, Siddhartha, LeCun, Yann, Sobal, Vlad
The enduring challenge in the field of artificial intelligence has been the control of systems to achieve desired behaviours. While for systems governed by straightforward dynamics equations, methods like Linear Quadratic Regulation (LQR) have historically proven highly effective, most real-world tasks, which require a general problem-solver, demand world models with dynamics that cannot be easily described by simple equations. Consequently, these models must be learned from data using neural networks. Most model predictive control (MPC) algorithms designed for visual world models have traditionally explored gradient-free population-based optimization methods, such as Cross Entropy and Model Predictive Path Integral (MPPI) for planning. However, we present an exploration of a gradient-based alternative that fully leverages the differentiability of the world model. In our study, we conduct a comparative analysis between our method and other MPC-based alternatives, as well as policy-based algorithms. In a sample-efficient setting, our method achieves on par or superior performance compared to the alternative approaches in most tasks. Additionally, we introduce a hybrid model that combines policy networks and gradient-based MPC, which outperforms pure policy based methods thereby holding promise for Gradient-based planning with world models in complex real-world tasks.
To Compress or Not to Compress- Self-Supervised Learning and Information Theory: A Review
Shwartz-Ziv, Ravid, LeCun, Yann
Deep neural networks excel in supervised learning tasks but are constrained by the need for extensive labeled data. Self-supervised learning emerges as a promising alternative, allowing models to learn without explicit labels. Information theory, and notably the information bottleneck principle, has been pivotal in shaping deep neural networks. This principle focuses on optimizing the trade-off between compression and preserving relevant information, providing a foundation for efficient network design in supervised contexts. However, its precise role and adaptation in self-supervised learning remain unclear. In this work, we scrutinize various self-supervised learning approaches from an information-theoretic perspective, introducing a unified framework that encapsulates the \textit{self-supervised information-theoretic learning problem}. We weave together existing research into a cohesive narrative, delve into contemporary self-supervised methodologies, and spotlight potential research avenues and inherent challenges. Additionally, we discuss the empirical evaluation of information-theoretic quantities and their estimation methods. Overall, this paper furnishes an exhaustive review of the intersection of information theory, self-supervised learning, and deep neural networks.
GAIA: a benchmark for General AI Assistants
Mialon, Grégoire, Fourrier, Clémentine, Swift, Craig, Wolf, Thomas, LeCun, Yann, Scialom, Thomas
We introduce GAIA, a benchmark for General AI Assistants that, if solved, would represent a milestone in AI research. GAIA proposes real-world questions that require a set of fundamental abilities such as reasoning, multi-modality handling, web browsing, and generally tool-use proficiency. GAIA questions are conceptually simple for humans yet challenging for most advanced AIs: we show that human respondents obtain 92\% vs. 15\% for GPT-4 equipped with plugins. This notable performance disparity contrasts with the recent trend of LLMs outperforming humans on tasks requiring professional skills in e.g. law or chemistry. GAIA's philosophy departs from the current trend in AI benchmarks suggesting to target tasks that are ever more difficult for humans. We posit that the advent of Artificial General Intelligence (AGI) hinges on a system's capability to exhibit similar robustness as the average human does on such questions. Using GAIA's methodology, we devise 466 questions and their answer. We release our questions while retaining answers to 300 of them to power a leader-board available at https://huggingface.co/gaia-benchmark.