Not enough data to create a plot.
Try a different view from the menu above.
Lavaei, Javad
A theory on the absence of spurious solutions for nonconvex and nonsmooth optimization
Josz, Cedric, Ouyang, Yi, Zhang, Richard, Lavaei, Javad, Sojoudi, Somayeh
We study the set of continuous functions that admit no spurious local optima (i.e. local minima that are not global minima) which we term global functions. They satisfy various powerful properties for analyzing nonconvex and nonsmooth optimization problems. For instance, they satisfy a theorem akin to the fundamental uniform limit theorem in the analysis regarding continuous functions. Global functions are also endowed with useful properties regarding the composition of functions and change of variables. Using these new results, we show that a class of non-differentiable nonconvex optimization problems arising in tensor decomposition applications are global functions. This is the first result concerning nonconvex methods for nonsmooth objective functions. Our result provides a theoretical guarantee for the widely-used $\ell_1$ norm to avoid outliers in nonconvex optimization.
How Much Restricted Isometry is Needed In Nonconvex Matrix Recovery?
Zhang, Richard, Josz, Cedric, Sojoudi, Somayeh, Lavaei, Javad
When the linear measurements of an instance of low-rank matrix recovery satisfy a restricted isometry property (RIP) --- i.e. they are approximately norm-preserving --- the problem is known to contain no spurious local minima, so exact recovery is guaranteed. In this paper, we show that moderate RIP is not enough to eliminate spurious local minima, so existing results can only hold for near-perfect RIP. In fact, counterexamples are ubiquitous: every $x$ is the spurious local minimum of a rank-1 instance of matrix recovery that satisfies RIP. One specific counterexample has RIP constant $\delta=1/2$, but causes randomly initialized stochastic gradient descent (SGD) to fail 12\% of the time. SGD is frequently able to avoid and escape spurious local minima, but this empirical result shows that it can occasionally be defeated by their existence. Hence, while exact recovery guarantees will likely require a proof of no spurious local minima, arguments based solely on norm preservation will only be applicable to a narrow set of nearly-isotropic instances.
How Much Restricted Isometry is Needed In Nonconvex Matrix Recovery?
Zhang, Richard, Josz, Cedric, Sojoudi, Somayeh, Lavaei, Javad
When the linear measurements of an instance of low-rank matrix recovery satisfy a restricted isometry property (RIP) --- i.e. they are approximately norm-preserving --- the problem is known to contain no spurious local minima, so exact recovery is guaranteed. In this paper, we show that moderate RIP is not enough to eliminate spurious local minima, so existing results can only hold for near-perfect RIP. In fact, counterexamples are ubiquitous: every $x$ is the spurious local minimum of a rank-1 instance of matrix recovery that satisfies RIP. One specific counterexample has RIP constant $\delta=1/2$, but causes randomly initialized stochastic gradient descent (SGD) to fail 12\% of the time. SGD is frequently able to avoid and escape spurious local minima, but this empirical result shows that it can occasionally be defeated by their existence. Hence, while exact recovery guarantees will likely require a proof of no spurious local minima, arguments based solely on norm preservation will only be applicable to a narrow set of nearly-isotropic instances.
A theory on the absence of spurious solutions for nonconvex and nonsmooth optimization
Josz, Cedric, Ouyang, Yi, Zhang, Richard, Lavaei, Javad, Sojoudi, Somayeh
We study the set of continuous functions that admit no spurious local optima (i.e. local minima that are not global minima) which we term global functions. They satisfy various powerful properties for analyzing nonconvex and nonsmooth optimization problems. For instance, they satisfy a theorem akin to the fundamental uniform limit theorem in the analysis regarding continuous functions. Global functions are also endowed with useful properties regarding the composition of functions and change of variables. Using these new results, we show that a class of non-differentiable nonconvex optimization problems arising in tensor decomposition applications are global functions. This is the first result concerning nonconvex methods for nonsmooth objective functions. Our result provides a theoretical guarantee for the widely-used $\ell_1$ norm to avoid outliers in nonconvex optimization.
How Much Restricted Isometry is Needed In Nonconvex Matrix Recovery?
Zhang, Richard Y., Josz, Cédric, Sojoudi, Somayeh, Lavaei, Javad
When the linear measurements of an instance of low-rank matrix recovery satisfy a restricted isometry property (RIP)---i.e. they are approximately norm-preserving---the problem is known to contain no spurious local minima, so exact recovery is guaranteed. In this paper, we show that moderate RIP is not enough to eliminate spurious local minima, so existing results can only hold for near-perfect RIP. In fact, counterexamples are ubiquitous: we prove that every x is the spurious local minimum of a rank-1 instance of matrix recovery that satisfies RIP. One specific counterexample has RIP constant $\delta=1/2$, but causes randomly initialized stochastic gradient descent (SGD) to fail 12% of the time. SGD is frequently able to avoid and escape spurious local minima, but this empirical result shows that it can occasionally be defeated by their existence. Hence, while exact recovery guarantees will likely require a proof of no spurious local minima, arguments based solely on norm preservation will only be applicable to a narrow set of nearly-isotropic instances.