Plotting

 Laurent Massoulié


Optimal Algorithms for Non-Smooth Distributed Optimization in Networks

Neural Information Processing Systems

In this work, we consider the distributed optimization of non-smooth convex functions using a network of computing units. We investigate this problem under two regularity assumptions: (1) the Lipschitz continuity of the global objective function, and (2) the Lipschitz continuity of local individual functions. Under the local regularity assumption, we provide the first optimal first-order decentralized algorithm called multi-step primal-dual (MSPD) and its corresponding optimal convergence rate. A notable aspect of this result is that, for non-smooth functions, while the dominant term of the error is in O(1/ t), the structure of the communication network only impacts a second-order term in O(1/t), where t is time.


An Accelerated Decentralized Stochastic Proximal Algorithm for Finite Sums

Neural Information Processing Systems

Modern large-scale finite-sum optimization relies on two key aspects: distribution and stochastic updates. For smooth and strongly convex problems, existing decentralized algorithms are slower than modern accelerated variance-reduced stochastic algorithms when run on a single machine, and are therefore not efficient. Centralized algorithms are fast, but their scaling is limited by global aggregation steps that result in communication bottlenecks. In this work, we propose an efficient Accelerated Decentralized stochastic algorithm for Finite Sums named ADFS, which uses local stochastic proximal updates and randomized pairwise communications between nodes. On n machines, ADFS learns from nm samples in the same time it takes optimal algorithms to learn from m samples on one machine. This scaling holds until a critical network size is reached, which depends on communication delays, on the number of samples m, and on the network topology. We provide a theoretical analysis based on a novel augmented graph approach combined with a precise evaluation of synchronization times and an extension of the accelerated proximal coordinate gradient algorithm to arbitrary sampling. We illustrate the improvement of ADFS over state-of-the-art decentralized approaches with experiments.


An Accelerated Decentralized Stochastic Proximal Algorithm for Finite Sums

Neural Information Processing Systems

Modern large-scale finite-sum optimization relies on two key aspects: distribution and stochastic updates. For smooth and strongly convex problems, existing decentralized algorithms are slower than modern accelerated variance-reduced stochastic algorithms when run on a single machine, and are therefore not efficient. Centralized algorithms are fast, but their scaling is limited by global aggregation steps that result in communication bottlenecks. In this work, we propose an efficient Accelerated Decentralized stochastic algorithm for Finite Sums named ADFS, which uses local stochastic proximal updates and randomized pairwise communications between nodes. On n machines, ADFS learns from nm samples in the same time it takes optimal algorithms to learn from m samples on one machine. This scaling holds until a critical network size is reached, which depends on communication delays, on the number of samples m, and on the network topology. We provide a theoretical analysis based on a novel augmented graph approach combined with a precise evaluation of synchronization times and an extension of the accelerated proximal coordinate gradient algorithm to arbitrary sampling. We illustrate the improvement of ADFS over state-of-the-art decentralized approaches with experiments.