Not enough data to create a plot.
Try a different view from the menu above.
Laptev, Nikolay
NeuralProphet: Explainable Forecasting at Scale
Triebe, Oskar, Hewamalage, Hansika, Pilyugina, Polina, Laptev, Nikolay, Bergmeir, Christoph, Rajagopal, Ram
We introduce NeuralProphet, a successor to Facebook Prophet, which set an industry standard for explainable, scalable, and user-friendly forecasting frameworks. With the proliferation of time series data, explainable forecasting remains a challenging task for business and operational decision making. Hybrid solutions are needed to bridge the gap between interpretable classical methods and scalable deep learning models. We view Prophet as a precursor to such a solution. However, Prophet lacks local context, which is essential for forecasting the near-term future and is challenging to extend due to its Stan backend. NeuralProphet is a hybrid forecasting framework based on PyTorch and trained with standard deep learning methods, making it easy for developers to extend the framework. Local context is introduced with auto-regression and covariate modules, which can be configured as classical linear regression or as Neural Networks. Otherwise, NeuralProphet retains the design philosophy of Prophet and provides the same basic model components. Our results demonstrate that NeuralProphet produces interpretable forecast components of equivalent or superior quality to Prophet on a set of generated time series. NeuralProphet outperforms Prophet on a diverse collection of real-world datasets. For short to medium-term forecasts, NeuralProphet improves forecast accuracy by 55 to 92 percent.
Scalable Data Classification for Security and Privacy
Tanaka, Paulo, Sapra, Sameet, Laptev, Nikolay
Content based data classification is an open challenge. Traditional Data Loss Prevention (DLP)-like systems solve this problem by fingerprinting the data in question and monitoring endpoints for the fingerprinted data. With a large number of constantly changing data assets in Facebook, this approach is both not scalable and ineffective in discovering what data is where. This paper is about an end-to-end system built to detect sensitive semantic types within Facebook at scale and enforce data retention and access controls automatically. The approach described here is our first end-to-end privacy system that attempts to solve this problem by incorporating data signals, machine learning, and traditional fingerprinting techniques to map out and classify all data within Facebook. The described system is in production achieving a 0.9+ average F2 scores across various privacy classes while handling a large number of data assets across dozens of data stores.
Deep and Confident Prediction for Time Series at Uber
Zhu, Lingxue, Laptev, Nikolay
Reliable uncertainty estimation for time series prediction is critical in many fields, including physics, biology, and manufacturing. At Uber, probabilistic time series forecasting is used for robust prediction of number of trips during special events, driver incentive allocation, as well as real-time anomaly detection across millions of metrics. Classical time series models are often used in conjunction with a probabilistic formulation for uncertainty estimation. However, such models are hard to tune, scale, and add exogenous variables to. Motivated by the recent resurgence of Long Short Term Memory networks, we propose a novel end-to-end Bayesian deep model that provides time series prediction along with uncertainty estimation. We provide detailed experiments of the proposed solution on completed trips data, and successfully apply it to large-scale time series anomaly detection at Uber.
Rank-to-engage: New Listwise Approaches to Maximize Engagement
Jain, Swayambhoo, Soni, Akshay, Laptev, Nikolay, Mehdad, Yashar
For many internet businesses, presenting a given list of items in an order that maximizes a certain metric of interest (e.g., click-through-rate, average engagement time etc.) is crucial. We approach the aforementioned task from a learning-to-rank perspective which reveals a new problem setup. In traditional learning-to-rank literature, it is implicitly assumed that during the training data generation one has access to the \emph{best or desired} order for the given list of items. In this work, we consider a problem setup where we do not observe the desired ranking. We present two novel solutions: the first solution is an extension of already existing listwise learning-to-rank technique--Listwise maximum likelihood estimation (ListMLE)--while the second one is a generic machine learning based framework that tackles the problem in its entire generality. We discuss several challenges associated with this generic framework, and propose a simple \emph{item-payoff} and \emph{positional-gain} model that addresses these challenges. We provide training algorithms, inference procedures, and demonstrate the effectiveness of the two approaches over traditional ListMLE on synthetic as well as on real-life setting of ranking news articles for increased dwell time.
DECT: Distributed Evolving Context Tree for Understanding User Behavior Pattern Evolution
Shu, Xiaokui (Virginia Polytechnic Institute and State University) | Laptev, Nikolay (Yahoo Labs) | Yao, Danfeng (Daphne) (Virginia Polytechnic Institute and State University)
Internet user behavior models characterize user browsing dynamics or the transitions among web pages. The models help Internet companies improve their services by accurately targeting customers and providing them the information they want. For instance, specific web pages can be customized and prefetched for individuals based on sequences of web pages they have visited. Existing user behavior models abstracted as time-homogeneous Markov models cannot efficiently model user behavior variation through time. This demo presents DECT, a scalable time-variant variable-order Markov model. DECT digests terabytes of user session data and yields user behavior patterns through time. We realize DECT using Apache Spark and deploy it on top of Yahoo! infrastructure. We demonstrate the benefits of DECT with anomaly detection and ad click rate prediction applications. DECT enables the detection of higher-order path anomalies and provides deep insights into ad click rates with respect to user visiting paths.
Inertial Hidden Markov Models: Modeling Change in Multivariate Time Series
Montanez, George D. (Carnegie Mellon University) | Amizadeh, Saeed (Yahoo Labs) | Laptev, Nikolay (Yahoo Labs)
Faced with the problem of characterizing systematic changes in multivariate time series in an unsupervised manner, we derive and test two methods of regularizing hidden Markov models for this task. Regularization on state transitions provides smooth transitioning among states, such that the sequences are split into broad, contiguous segments. Our methods are compared with a recent hierarchical Dirichlet process hidden Markov model (HDP-HMM) and a baseline standard hidden Markov model, of which the former suffers from poor performance on moderate-dimensional data and sensitivity to parameter settings, while the latter suffers from rapid state transitioning, over-segmentation and poor performance on a segmentation task involving human activity accelerometer data from the UCI Repository. The regularized methods developed here are able to perfectly characterize change of behavior in the human activity data for roughly half of the real-data test cases, with accuracy of 94% and low variation of information. In contrast to the HDP-HMM, our methods provide simple, drop-in replacements for standard hidden Markov model update rules, allowing standard expectation maximization (EM) algorithms to be used for learning.