Goto

Collaborating Authors

 Lane, Nicholas D.


Recurrent Early Exits for Federated Learning with Heterogeneous Clients

arXiv.org Artificial Intelligence

Federated learning (FL) has enabled distributed learning of a model across multiple clients in a privacy-preserving manner. One of the main challenges of FL is to accommodate clients with varying hardware capacities; clients have differing compute and memory requirements. To tackle this challenge, recent state-of-the-art approaches leverage the use of early exits. Nonetheless, these approaches fall short of mitigating the challenges of joint learning multiple exit classifiers, often relying on hand-picked heuristic solutions for knowledge distillation among classifiers and/or utilizing additional layers for weaker classifiers. In this work, instead of utilizing multiple classifiers, we propose a recurrent early exit approach named ReeFL that fuses features from different sub-models into a single shared classifier. Specifically, we use a transformer-based early-exit module shared among sub-models to i) better exploit multi-layer feature representations for task-specific prediction and ii) modulate the feature representation of the backbone model for subsequent predictions. We additionally present a per-client self-distillation approach where the best sub-model is automatically selected as the teacher of the other sub-models at each client. Our experiments on standard image and speech classification benchmarks across various emerging federated fine-tuning baselines demonstrate ReeFL's effectiveness over previous works.


The Future of Large Language Model Pre-training is Federated

arXiv.org Artificial Intelligence

Generative pre-trained large language models (LLMs) have demonstrated impressive performance over a wide range of tasks, thanks to the unprecedented amount of data they have been trained on. As established scaling laws indicate, LLMs' future performance improvement depends on the amount of computing and data sources we can leverage for pre-training. Federated learning (FL) has the potential to unleash the majority of the planet's data and computational resources, which are underutilized by the data-center-focused training methodology of current LLM practice. Our work presents a robust, flexible, reproducible FL approach that enables large-scale collaboration across institutions to train LLMs. This would mobilize more computational and data resources while matching or potentially exceeding centralized performance. We further show the effectiveness of the federated training scales with model size and present our approach for training a billion-scale federated LLM using limited resources. This will help data-rich actors to become the protagonists of LLMs pre-training instead of leaving the stage to compute-rich actors alone.


FedAnchor: Enhancing Federated Semi-Supervised Learning with Label Contrastive Loss for Unlabeled Clients

arXiv.org Artificial Intelligence

Federated learning (FL) is a distributed learning paradigm that facilitates collaborative training of a shared global model across devices while keeping data localized. The deployment of FL in numerous real-world applications faces delays, primarily due to the prevalent reliance on supervised tasks. Generating detailed labels at edge devices, if feasible, is demanding, given resource constraints and the imperative for continuous data updates. In addressing these challenges, solutions such as federated semi-supervised learning (FSSL), which relies on unlabeled clients' data and a limited amount of labeled data on the server, become pivotal. In this paper, we propose FedAnchor, an innovative FSSL method that introduces a unique double-head structure, called anchor head, paired with the classification head trained exclusively on labeled anchor data on the server. The anchor head is empowered with a newly designed label contrastive loss based on the cosine similarity metric. Our approach mitigates the confirmation bias and overfitting issues associated with pseudo-labeling techniques based on high-confidence model prediction samples. Extensive experiments on CIFAR10/100 and SVHN datasets demonstrate that our method outperforms the state-of-the-art method by a significant margin in terms of convergence rate and model accuracy.


Federated Learning Priorities Under the European Union Artificial Intelligence Act

arXiv.org Artificial Intelligence

The age of AI regulation is upon us, with the European Union Artificial Intelligence Act (AI Act) leading the way. Our key inquiry is how this will affect Federated Learning (FL), whose starting point of prioritizing data privacy while performing ML fundamentally differs from that of centralized learning. We believe the AI Act and future regulations could be the missing catalyst that pushes FL toward mainstream adoption. However, this can only occur if the FL community reprioritizes its research focus. In our position paper, we perform a first-of-its-kind interdisciplinary analysis (legal and ML) of the impact the AI Act may have on FL and make a series of observations supporting our primary position through quantitative and qualitative analysis. We explore data governance issues and the concern for privacy. We establish new challenges regarding performance and energy efficiency within lifecycle monitoring. Taken together, our analysis suggests there is a sizable opportunity for FL to become a crucial component of AI Act-compliant ML systems and for the new regulation to drive the adoption of FL techniques in general. Most noteworthy are the opportunities to defend against data bias and enhance private and secure computation


How Much Is Hidden in the NAS Benchmarks? Few-Shot Adaptation of a NAS Predictor

arXiv.org Artificial Intelligence

Neural architecture search has proven to be a powerful approach to designing and refining neural networks, often boosting their performance and efficiency over manually-designed variations, but comes with computational overhead. While there has been a considerable amount of research focused on lowering the cost of NAS for mainstream tasks, such as image classification, a lot of those improvements stem from the fact that those tasks are well-studied in the broader context. Consequently, applicability of NAS to emerging and under-represented domains is still associated with a relatively high cost and/or uncertainty about the achievable gains. To address this issue, we turn our focus towards the recent growth of publicly available NAS benchmarks in an attempt to extract general NAS knowledge, transferable across different tasks and search spaces. We borrow from the rich field of meta-learning for few-shot adaptation and carefully study applicability of those methods to NAS, with a special focus on the relationship between task-level correlation (domain shift) and predictor transferability; which we deem critical for improving NAS on diverse tasks. In our experiments, we use 6 NAS benchmarks in conjunction, spanning in total 16 NAS settings -- our meta-learning approach not only shows superior (or matching) performance in the cross-validation experiments but also successful extrapolation to a new search space and tasks.


FDAPT: Federated Domain-adaptive Pre-training for Language Models

arXiv.org Artificial Intelligence

Foundation models (FMs) have shown prominent success in a wide range of tasks [Bommasani et al., 2021]. Their applicability to specific domain-task pairings relies on the availability of, both, high-quality data and significant computational resources. These challenges are not new to the field and, indeed, Federated Learning (FL) has been shown to be a promising solution in similar setups [Yu et al., 2023, Zhuang et al., 2023]. This paper tackles the specific case of Domain-Adaptive Pre-Training (DAPT), a key step in the application of FMs. We conduct the first comprehensive empirical study to evaluate the performance of Federated Domain-Adaptive Pre-Training (FDAPT). We demonstrate that FDAPT can maintain competitive downstream task performance to the centralized baseline in both IID and non-IID situations. Finally, we propose a novel algorithm, Frozen Federated Domain-Adaptive Pre-Training (FFDAPT). FFDAPT improves the computational efficiency by 12.1% on average and exhibits similar downstream task performance to vanilla FDAPT, with general performance fluctuations remaining less than 1%.


The Future of Consumer Edge-AI Computing

arXiv.org Artificial Intelligence

In the last decade, Deep Learning has rapidly infiltrated the consumer end, mainly thanks to hardware acceleration across devices. However, as we look towards the future, it is evident that isolated hardware will be insufficient. Increasingly complex AI tasks demand shared resources, cross-device collaboration, and multiple data types, all without compromising user privacy or quality of experience. To address this, we introduce a novel paradigm centered around EdgeAI-Hub devices, designed to reorganise and optimise compute resources and data access at the consumer edge. To this end, we lay a holistic foundation for the transition from on-device to Edge-AI serving systems in consumer environments, detailing their components, structure, challenges and opportunities.


A Federated Learning Benchmark for Drug-Target Interaction

arXiv.org Artificial Intelligence

Aggregating pharmaceutical data in the drug-target interaction (DTI) domain has the potential to deliver life-saving breakthroughs. It is, however, notoriously difficult due to regulatory constraints and commercial interests. This work proposes the application of federated learning, which we argue to be reconcilable with the industry's constraints, as it does not require sharing of any information that would reveal the entities' data or any other high-level summary of it. When used on a representative GraphDTA model and the KIBA dataset it achieves up to 15% improved performance relative to the best available non-privacy preserving alternative. Our extensive battery of experiments shows that, unlike in other domains, the non-IID data distribution in the DTI datasets does not deteriorate FL performance. Additionally, we identify a material trade-off between the benefits of adding new data, and the cost of adding more clients.


Sparse-DySta: Sparsity-Aware Dynamic and Static Scheduling for Sparse Multi-DNN Workloads

arXiv.org Artificial Intelligence

Running multiple deep neural networks (DNNs) in parallel has become an emerging workload in both edge devices, such as mobile phones where multiple tasks serve a single user for daily activities, and data centers, where various requests are raised from millions of users, as seen with large language models. To reduce the costly computational and memory requirements of these workloads, various efficient sparsification approaches have been introduced, resulting in widespread sparsity across different types of DNN models. In this context, there is an emerging need for scheduling sparse multi-DNN workloads, a problem that is largely unexplored in previous literature. This paper systematically analyses the use-cases of multiple sparse DNNs and investigates the opportunities for optimizations. Based on these findings, we propose Dysta, a novel bi-level dynamic and static scheduler that utilizes both static sparsity patterns and dynamic sparsity information for the sparse multi-DNN scheduling. Both static and dynamic components of Dysta are jointly designed at the software and hardware levels, respectively, to improve and refine the scheduling approach. To facilitate future progress in the study of this class of workloads, we construct a public benchmark that contains sparse multi-DNN workloads across different deployment scenarios, spanning from mobile phones and AR/VR wearables to data centers. A comprehensive evaluation on the sparse multi-DNN benchmark demonstrates that our proposed approach outperforms the state-of-the-art methods with up to 10% decrease in latency constraint violation rate and nearly 4X reduction in average normalized turnaround time. Our artifacts and code are publicly available at: https://github.com/SamsungLabs/Sparse-Multi-DNN-Scheduling.


FedL2P: Federated Learning to Personalize

arXiv.org Artificial Intelligence

Federated learning (FL) research has made progress in developing algorithms for distributed learning of global models, as well as algorithms for local personalization of those common models to the specifics of each client's local data distribution. However, different FL problems may require different personalization strategies, and it may not even be possible to define an effective one-size-fits-all personalization strategy for all clients: depending on how similar each client's optimal predictor is to that of the global model, different personalization strategies may be preferred. In this paper, we consider the federated meta-learning problem of learning personalization strategies. Specifically, we consider meta-nets that induce the batch-norm and learning rate parameters for each client given local data statistics. By learning these meta-nets through FL, we allow the whole FL network to collaborate in learning a customized personalization strategy for each client. Empirical results show that this framework improves on a range of standard hand-crafted personalization baselines in both label and feature shift situations.