Goto

Collaborating Authors

 Lai, Vivian


Adversarial Collaborative Filtering for Free

arXiv.org Artificial Intelligence

Collaborative Filtering (CF) has been successfully used to help users discover the items of interest. Nevertheless, existing CF methods suffer from noisy data issue, which negatively impacts the quality of recommendation. To tackle this problem, many prior studies leverage adversarial learning to regularize the representations of users/items, which improves both generalizability and robustness. Those methods often learn adversarial perturbations and model parameters under min-max optimization framework. However, there still have two major drawbacks: 1) Existing methods lack theoretical guarantees of why adding perturbations improve the model generalizability and robustness; 2) Solving min-max optimization is time-consuming. In addition to updating the model parameters, each iteration requires additional computations to update the perturbations, making them not scalable for industry-scale datasets. In this paper, we present Sharpness-aware Collaborative Filtering (SharpCF), a simple yet effective method that conducts adversarial training without extra computational cost over the base optimizer. To achieve this goal, we first revisit the existing adversarial collaborative filtering and discuss its connection with recent Sharpness-aware Minimization. This analysis shows that adversarial training actually seeks model parameters that lie in neighborhoods around the optimal model parameters having uniformly low loss values, resulting in better generalizability. To reduce the computational overhead, SharpCF introduces a novel trajectory loss to measure the alignment between current weights and past weights. Experimental results on real-world datasets demonstrate that our SharpCF achieves superior performance with almost zero additional computational cost comparing to adversarial training.


Selective Explanations: Leveraging Human Input to Align Explainable AI

arXiv.org Artificial Intelligence

While a vast collection of explainable AI (XAI) algorithms have been developed in recent years, they are often criticized for significant gaps with how humans produce and consume explanations. As a result, current XAI techniques are often found to be hard to use and lack effectiveness. In this work, we attempt to close these gaps by making AI explanations selective -- a fundamental property of human explanations -- by selectively presenting a subset from a large set of model reasons based on what aligns with the recipient's preferences. We propose a general framework for generating selective explanations by leveraging human input on a small sample. This framework opens up a rich design space that accounts for different selectivity goals, types of input, and more. As a showcase, we use a decision-support task to explore selective explanations based on what the decision-maker would consider relevant to the decision task. We conducted two experimental studies to examine three out of a broader possible set of paradigms based on our proposed framework: in Study 1, we ask the participants to provide their own input to generate selective explanations, with either open-ended or critique-based input. In Study 2, we show participants selective explanations based on input from a panel of similar users (annotators). Our experiments demonstrate the promise of selective explanations in reducing over-reliance on AI and improving decision outcomes and subjective perceptions of the AI, but also paint a nuanced picture that attributes some of these positive effects to the opportunity to provide one's own input to augment AI explanations. Overall, our work proposes a novel XAI framework inspired by human communication behaviors and demonstrates its potentials to encourage future work to better align AI explanations with human production and consumption of explanations.


Sharpness-Aware Graph Collaborative Filtering

arXiv.org Artificial Intelligence

Graph Neural Networks (GNNs) have achieved impressive performance in collaborative filtering. However, GNNs tend to yield inferior performance when the distributions of training and test data are not aligned well. Also, training GNNs requires optimizing non-convex neural networks with an abundance of local and global minima, which may differ widely in their performance at test time. Thus, it is essential to choose the minima carefully. Here we propose an effective training schema, called {gSAM}, under the principle that the \textit{flatter} minima has a better generalization ability than the \textit{sharper} ones. To achieve this goal, gSAM regularizes the flatness of the weight loss landscape by forming a bi-level optimization: the outer problem conducts the standard model training while the inner problem helps the model jump out of the sharp minima. Experimental results show the superiority of our gSAM.


Towards a Science of Human-AI Decision Making: A Survey of Empirical Studies

arXiv.org Artificial Intelligence

As AI systems demonstrate increasingly strong predictive performance, their adoption has grown in numerous domains. However, in high-stakes domains such as criminal justice and healthcare, full automation is often not desirable due to safety, ethical, and legal concerns, yet fully manual approaches can be inaccurate and time consuming. As a result, there is growing interest in the research community to augment human decision making with AI assistance. Besides developing AI technologies for this purpose, the emerging field of human-AI decision making must embrace empirical approaches to form a foundational understanding of how humans interact and work with AI to make decisions. To invite and help structure research efforts towards a science of understanding and improving human-AI decision making, we survey recent literature of empirical human-subject studies on this topic. We summarize the study design choices made in over 100 papers in three important aspects: (1) decision tasks, (2) AI models and AI assistance elements, and (3) evaluation metrics. For each aspect, we summarize current trends, discuss gaps in current practices of the field, and make a list of recommendations for future research. Our survey highlights the need to develop common frameworks to account for the design and research spaces of human-AI decision making, so that researchers can make rigorous choices in study design, and the research community can build on each other's work and produce generalizable scientific knowledge. We also hope this survey will serve as a bridge for HCI and AI communities to work together to mutually shape the empirical science and computational technologies for human-AI decision making.


Understanding the Effect of Out-of-distribution Examples and Interactive Explanations on Human-AI Decision Making

arXiv.org Artificial Intelligence

Although AI holds promise for improving human decision making in societally critical domains, it remains an open question how human-AI teams can reliably outperform AI alone and human alone in challenging prediction tasks (also known as complementary performance). We explore two directions to understand the gaps in achieving complementary performance. First, we argue that the typical experimental setup limits the potential of human-AI teams. To account for lower AI performance out-of-distribution than in-distribution because of distribution shift, we design experiments with different distribution types and investigate human performance for both in-distribution and out-of-distribution examples. Second, we develop novel interfaces to support interactive explanations so that humans can actively engage with AI assistance. Using in-person user study and large-scale randomized experiments across three tasks, we demonstrate a clear difference between in-distribution and out-of-distribution, and observe mixed results for interactive explanations: while interactive explanations improve human perception of AI assistance's usefulness, they may magnify human biases and lead to limited performance improvement. Overall, our work points out critical challenges and future directions towards complementary performance.


On Human Predictions with Explanations and Predictions of Machine Learning Models: A Case Study on Deception Detection

arXiv.org Artificial Intelligence

Humans are the final decision makers in critical tasks that involve ethical and legal concerns, ranging from recidivism prediction, to medical diagnosis, to fighting against fake news. Although machine learning models can sometimes achieve impressive performance in these tasks, these tasks are not amenable to full automation. To realize the potential of machine learning for improving human decisions, it is important to understand how assistance from machine learning models affects human performance and human agency. In this paper, we use deception detection as a testbed and investigate how we can harness explanations and predictions of machine learning models to improve human performance while retaining human agency. We propose a spectrum between full human agency and full automation, and develop varying levels of machine assistance along the spectrum that gradually increase the influence of machine predictions. We find that without showing predicted labels, explanations alone do not statistically significantly improve human performance in the end task. In comparison, human performance is greatly improved by showing predicted labels (>20% relative improvement) and can be further improved by explicitly suggesting strong machine performance. Interestingly, when predicted labels are shown, explanations of machine predictions induce a similar level of accuracy as an explicit statement of strong machine performance. Our results demonstrate a tradeoff between human performance and human agency and show that explanations of machine predictions can moderate this tradeoff.