Not enough data to create a plot.
Try a different view from the menu above.
Kumar, Suryansh
Mobile Robotic Multi-View Photometric Stereo
Kumar, Suryansh
Multi-View Photometric Stereo (MVPS) is a popular method for fine-detailed 3D acquisition of an object from images. Despite its outstanding results on diverse material objects, a typical MVPS experimental setup requires a well-calibrated light source and a monocular camera installed on an immovable base. This restricts the use of MVPS on a movable platform, limiting us from taking MVPS benefits in 3D acquisition for mobile robotics applications. To this end, we introduce a new mobile robotic system for MVPS. While the proposed system brings advantages, it introduces additional algorithmic challenges. Addressing them, in this paper, we further propose an incremental approach for mobile robotic MVPS. Our approach leverages a supervised learning setup to predict per-view surface normal, object depth, and per-pixel uncertainty in model-predicted results. A refined depth map per view is obtained by solving an MVPS-driven optimization problem proposed in this paper. Later, we fuse the refined depth map while tracking the camera pose w.r.t the reference frame to recover globally consistent object 3D geometry. Experimental results show the advantages of our robotic system and algorithm, featuring the local high-frequency surface detail recovery with globally consistent object shape. Our work is beyond any MVPS system yet presented, providing encouraging results on objects with unknown reflectance properties using fewer frames without a tiring calibration and installation process, enabling computationally efficient robotic automation approach to photogrammetry. The proposed approach is nearly 100 times computationally faster than the state-of-the-art MVPS methods such as [1, 2] while maintaining the similar results when tested on subjects taken from the benchmark DiLiGenT MV dataset [3].
Stereo Risk: A Continuous Modeling Approach to Stereo Matching
Liu, Ce, Kumar, Suryansh, Gu, Shuhang, Timofte, Radu, Yao, Yao, Van Gool, Luc
We introduce Stereo Risk, a new deep-learning approach to solve the classical stereo-matching problem in computer vision. As it is well-known that stereo matching boils down to a per-pixel disparity estimation problem, the popular state-of-the-art stereo-matching approaches widely rely on regressing the scene disparity values, yet via discretization of scene disparity values. Such discretization often fails to capture the nuanced, continuous nature of scene depth. Stereo Risk departs from the conventional discretization approach by formulating the scene disparity as an optimal solution to a continuous risk minimization problem, hence the name "stereo risk". We demonstrate that $L^1$ minimization of the proposed continuous risk function enhances stereo-matching performance for deep networks, particularly for disparities with multi-modal probability distributions. Furthermore, to enable the end-to-end network training of the non-differentiable $L^1$ risk optimization, we exploited the implicit function theorem, ensuring a fully differentiable network. A comprehensive analysis demonstrates our method's theoretical soundness and superior performance over the state-of-the-art methods across various benchmark datasets, including KITTI 2012, KITTI 2015, ETH3D, SceneFlow, and Middlebury 2014.
ICGNet: A Unified Approach for Instance-Centric Grasping
Zurbrügg, René, Liu, Yifan, Engelmann, Francis, Kumar, Suryansh, Hutter, Marco, Patil, Vaishakh, Yu, Fisher
Accurate grasping is the key to several robotic tasks including assembly and household robotics. Executing a successful grasp in a cluttered environment requires multiple levels of scene understanding: First, the robot needs to analyze the geometric properties of individual objects to find feasible grasps. These grasps need to be compliant with the local object geometry. Second, for each proposed grasp, the robot needs to reason about the interactions with other objects in the scene. Finally, the robot must compute a collision-free grasp trajectory while taking into account the geometry of the target object. Most grasp detection algorithms directly predict grasp poses in a monolithic fashion, which does not capture the composability of the environment. In this paper, we introduce an end-to-end architecture for object-centric grasping. The method uses pointcloud data from a single arbitrary viewing direction as an input and generates an instance-centric representation for each partially observed object in the scene. This representation is further used for object reconstruction and grasp detection in cluttered table-top scenes. We show the effectiveness of the proposed method by extensively evaluating it against state-of-the-art methods on synthetic datasets, indicating superior performance for grasping and reconstruction. Additionally, we demonstrate real-world applicability by decluttering scenes with varying numbers of objects.
How To Not Train Your Dragon: Training-free Embodied Object Goal Navigation with Semantic Frontiers
Chen, Junting, Li, Guohao, Kumar, Suryansh, Ghanem, Bernard, Yu, Fisher
Object goal navigation is an important problem in Embodied AI that involves guiding the agent to navigate to an instance of the object category in an unknown environment -- typically an indoor scene. Unfortunately, current state-of-the-art methods for this problem rely heavily on data-driven approaches, \eg, end-to-end reinforcement learning, imitation learning, and others. Moreover, such methods are typically costly to train and difficult to debug, leading to a lack of transferability and explainability. Inspired by recent successes in combining classical and learning methods, we present a modular and training-free solution, which embraces more classic approaches, to tackle the object goal navigation problem. Our method builds a structured scene representation based on the classic visual simultaneous localization and mapping (V-SLAM) framework. We then inject semantics into geometric-based frontier exploration to reason about promising areas to search for a goal object. Our structured scene representation comprises a 2D occupancy map, semantic point cloud, and spatial scene graph. Our method propagates semantics on the scene graphs based on language priors and scene statistics to introduce semantic knowledge to the geometric frontiers. With injected semantic priors, the agent can reason about the most promising frontier to explore. The proposed pipeline shows strong experimental performance for object goal navigation on the Gibson benchmark dataset, outperforming the previous state-of-the-art. We also perform comprehensive ablation studies to identify the current bottleneck in the object navigation task.
Quantum Annealing for Single Image Super-Resolution
Choong, Han Yao, Kumar, Suryansh, Van Gool, Luc
This paper proposes a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem. One of the well-known classical approaches for SISR relies on the well-established patch-wise sparse modeling of the problem. Yet, this field's current state of affairs is that deep neural networks (DNNs) have demonstrated far superior results than traditional approaches. Nevertheless, quantum computing is expected to become increasingly prominent for machine learning problems soon. As a result, in this work, we take the privilege to perform an early exploration of applying a quantum computing algorithm to this important image enhancement problem, i.e., SISR. Among the two paradigms of quantum computing, namely universal gate quantum computing and adiabatic quantum computing (AQC), the latter has been successfully applied to practical computer vision problems, in which quantum parallelism has been exploited to solve combinatorial optimization efficiently. This work demonstrates formulating quantum SISR as a sparse coding optimization problem, which is solved using quantum annealers accessed via the D-Wave Leap platform. The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
VA-DepthNet: A Variational Approach to Single Image Depth Prediction
Liu, Ce, Kumar, Suryansh, Gu, Shuhang, Timofte, Radu, Van Gool, Luc
We introduce VA-DepthNet, a simple, effective, and accurate deep neural network approach for the single-image depth prediction (SIDP) problem. The proposed approach advocates using classical first-order variational constraints for this problem. While state-of-the-art deep neural network methods for SIDP learn the scene depth from images in a supervised setting, they often overlook the invaluable invariances and priors in the rigid scene space, such as the regularity of the scene. The paper's main contribution is to reveal the benefit of classical and well-founded variational constraints in the neural network design for the SIDP task. It is shown that imposing first-order variational constraints in the scene space together with popular encoder-decoder-based network architecture design provides excellent results for the supervised SIDP task. The imposed first-order variational constraint makes the network aware of the depth gradient in the scene space, i.e., regularity. The paper demonstrates the usefulness of the proposed approach via extensive evaluation and ablation analysis over several benchmark datasets, such as KITTI, NYU Depth V2, and SUN RGB-D. The VA-DepthNet at test time shows considerable improvements in depth prediction accuracy compared to the prior art and is accurate also at high-frequency regions in the scene space. Over the last decade, neural networks have introduced a new prospect for the 3D computer vision field. It has led to significant progress on many long-standing problems in this field, such as multiview stereo (Huang et al., 2018; Kaya et al., 2022), visual simultaneous localization and mapping (Teed & Deng, 2021), novel view synthesis (Mildenhall et al., 2021), etc. Among several 3D vision problems, one of the challenging, if not impossible, to solve is the single-image depth prediction (SIDP) problem. SIDP is indeed ill-posed--in a strict geometric sense, presenting an extraordinary challenge to solve this inverse problem reliably. Moreover, since we do not have access to multi-view images, it is hard to constrain this problem via well-known geometric constraints (Longuet-Higgins, 1981; Nistér, 2004; Furukawa & Ponce, 2009; Kumar et al., 2019; 2017). Accordingly, the SIDP problem generally boils down to an ambitious fitting problem, to which deep learning provides a suitable way to predict an acceptable solution to this problem (Yuan et al., 2022; Yin et al., 2019). Impressive earlier methods use Markov Random Fields (MRF) to model monocular cues and the relation between several over-segmented image parts (Saxena et al., 2007; 2008). Popular recent methods for SIDP are mostly supervised.
Uncertainty-Driven Dense Two-View Structure from Motion
Chen, Weirong, Kumar, Suryansh, Yu, Fisher
This work introduces an effective and practical solution to the dense two-view structure from motion (SfM) problem. One vital question addressed is how to mindfully use per-pixel optical flow correspondence between two frames for accurate pose estimation -- as perfect per-pixel correspondence between two images is difficult, if not impossible, to establish. With the carefully estimated camera pose and predicted per-pixel optical flow correspondences, a dense depth of the scene is computed. Later, an iterative refinement procedure is introduced to further improve optical flow matching confidence, camera pose, and depth, exploiting their inherent dependency in rigid SfM. The fundamental idea presented is to benefit from per-pixel uncertainty in the optical flow estimation and provide robustness to the dense SfM system via an online refinement. Concretely, we introduce our uncertainty-driven Dense Two-View SfM pipeline (DTV-SfM), consisting of an uncertainty-aware dense optical flow estimation approach that provides per-pixel correspondence with their confidence score of matching; a weighted dense bundle adjustment formulation that depends on optical flow uncertainty and bidirectional optical flow consistency to refine both pose and depth; a depth estimation network that considers its consistency with the estimated poses and optical flow respecting epipolar constraint. Extensive experiments show that the proposed approach achieves remarkable depth accuracy and state-of-the-art camera pose results superseding SuperPoint and SuperGlue accuracy when tested on benchmark datasets such as DeMoN, YFCC100M, and ScanNet. Code and more materials are available at http://vis.xyz/pub/dtv-sfm.