Plotting

 Kumar, Sandeep


A Comprehensive Insights into Drones: History, Classification, Architecture, Navigation, Applications, Challenges, and Future Trends

arXiv.org Artificial Intelligence

Unmanned Aerial Vehicles (UAVs), commonly known as Drones, are one of 21st century most transformative technologies. Emerging first for military use, advancements in materials, electronics, and software have catapulted drones into multipurpose tools for a wide range of industries. In this paper, we have covered the history, taxonomy, architecture, navigation systems and branched activities for the same. It explores important future trends like autonomous navigation, AI integration, and obstacle avoidance systems, emphasizing how they contribute to improving the efficiency and versatility of drones. It also looks at the major challenges like technical, environmental, economic, regulatory and ethical, that limit the actual take-up of drones, as well as trends that are likely to mitigate these obstacles in the future. This work offers a structured synthesis of existing studies and perspectives that enable insights about how drones will transform agriculture, logistics, healthcare, disaster management, and other areas, while also identifying new opportunities for innovation and development.


'Quis custodiet ipsos custodes?' Who will watch the watchmen? On Detecting AI-generated peer-reviews

arXiv.org Artificial Intelligence

The integrity of the peer-review process is vital for maintaining scientific rigor and trust within the academic community. With the steady increase in the usage of large language models (LLMs) like ChatGPT in academic writing, there is a growing concern that AI-generated texts could compromise scientific publishing, including peer-reviews. Previous works have focused on generic AI-generated text detection or have presented an approach for estimating the fraction of peer-reviews that can be AI-generated. Our focus here is to solve a real-world problem by assisting the editor or chair in determining whether a review is written by ChatGPT or not. To address this, we introduce the Term Frequency (TF) model, which posits that AI often repeats tokens, and the Review Regeneration (RR) model, which is based on the idea that ChatGPT generates similar outputs upon re-prompting. We stress test these detectors against token attack and paraphrasing. Finally, we propose an effective defensive strategy to reduce the effect of paraphrasing on our models. Our findings suggest both our proposed methods perform better than the other AI text detectors. Our RR model is more robust, although our TF model performs better than the RR model without any attacks. We make our code, dataset, and model public.


Enhancing Robustness of Graph Neural Networks through p-Laplacian

arXiv.org Machine Learning

With the increase of data in day-to-day life, businesses and different stakeholders need to analyze the data for better predictions. Traditionally, relational data has been a source of various insights, but with the increase in computational power and the need to understand deeper relationships between entities, the need to design new techniques has arisen. For this graph data analysis has become an extraordinary tool for understanding the data, which reveals more realistic and flexible modelling of complex relationships. Recently, Graph Neural Networks (GNNs) have shown great promise in various applications, such as social network analysis, recommendation systems, drug discovery, and more. However, many adversarial attacks can happen over the data, whether during training (poisoning attack) or during testing (evasion attack), which can adversely manipulate the desired outcome from the GNN model. Therefore, it is crucial to make the GNNs robust to such attacks. The existing robustness methods are computationally demanding and perform poorly when the intensity of attack increases. This paper presents a computationally efficient framework, namely, pLapGNN, based on weighted p-Laplacian for making GNNs robust. Empirical evaluation on real datasets establishes the efficacy and efficiency of the proposed method.


MASSFormer: Mobility-Aware Spectrum Sensing using Transformer-Driven Tiered Structure

arXiv.org Artificial Intelligence

In this paper, we develop a novel mobility-aware transformer-driven tiered structure (MASSFormer) based cooperative spectrum sensing method that effectively models the spatio-temporal dynamics of user movements. Unlike existing methods, our method considers a dynamic scenario involving mobile primary users (PUs) and secondary users (SUs)and addresses the complexities introduced by user mobility. The transformer architecture utilizes an attention mechanism, enabling the proposed method to adeptly model the temporal dynamics of user mobility by effectively capturing long-range dependencies within the input data. The proposed method first computes tokens from the sequence of covariance matrices (CMs) for each SU and processes them in parallel using the SUtransformer network to learn the spatio-temporal features at SUlevel. Subsequently, the collaborative transformer network learns the group-level PU state from all SU-level feature representations. The attention-based sequence pooling method followed by the transformer encoder adjusts the contributions of all tokens. The main goal of predicting the PU states at each SU-level and group-level is to improve detection performance even more. We conducted a sufficient amount of simulations and compared the detection performance of different SS methods. The proposed method is tested under imperfect reporting channel scenarios to show robustness. The efficacy of our method is validated with the simulation results demonstrating its higher performance compared with existing methods in terms of detection probability, sensing error, and classification accuracy.


Quantum Machine Learning in Drug Discovery: Applications in Academia and Pharmaceutical Industries

arXiv.org Machine Learning

In this introduction, we discuss the general methodology of quantum computing based on unitary transformations (gates) of quantum registers, which underpin the potential advancements in computational power over classical systems. We introduce the unique properties of quantum bits, or qubits, quantum calculations implemented by algorithms that evolve qubit states through unitary transformations, followed by measurements that collapse the superposition states to produce specific outcomes, and lastly the challenges faced in practical quantum computing limited by noise, with hybrid approaches that integrate quantum and classical computing to address current limitations. This introductory discussion sets the stage for a deeper exploration into quantum computing for machine learning applications in subsequent sections. Calculations with quantum computers generally require evolving the state of a quantum register by applying a sequence of pulses that implement unitary transformations according to a designed algorithm. A measurement of the resulting quantum state then collapses the coherent state, yielding a specific outcome of the calculation. To obtain reliable results, the process is typically repeated thousands of times, with averages taken over all of the measurements to account for quantum randomness and ensure statistical accuracy. This repetition is essential to achieve convergence, as each individual measurement only provides probabilistic information about the quantum state. Quantum registers are commonly based on qubits. Like classical bits, qubits can be observed in either of two possible states (0 or 1).


Modularity aided consistent attributed graph clustering via coarsening

arXiv.org Machine Learning

Graph clustering is an important unsupervised learning technique for partitioning graphs with attributes and detecting communities. However, current methods struggle to accurately capture true community structures and intra-cluster relations, be computationally efficient, and identify smaller communities. We address these challenges by integrating coarsening and modularity maximization, effectively leveraging both adjacency and node features to enhance clustering accuracy. We propose a loss function incorporating log-determinant, smoothness, and modularity components using a block majorization-minimization technique, resulting in superior clustering outcomes. The method is theoretically consistent under the Degree-Corrected Stochastic Block Model (DC-SBM), ensuring asymptotic error-free performance and complete label recovery. Our provably convergent and time-efficient algorithm seamlessly integrates with graph neural networks (GNNs) and variational graph autoencoders (VGAEs) to learn enhanced node features and deliver exceptional clustering performance. Extensive experiments on benchmark datasets demonstrate its superiority over existing state-of-the-art methods for both attributed and non-attributed graphs.


Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context

arXiv.org Artificial Intelligence

In this report, we introduce the Gemini 1.5 family of models, representing the next generation of highly compute-efficient multimodal models capable of recalling and reasoning over fine-grained information from millions of tokens of context, including multiple long documents and hours of video and audio. The family includes two new models: (1) an updated Gemini 1.5 Pro, which exceeds the February version on the great majority of capabilities and benchmarks; (2) Gemini 1.5 Flash, a more lightweight variant designed for efficiency with minimal regression in quality. Gemini 1.5 models achieve near-perfect recall on long-context retrieval tasks across modalities, improve the state-of-the-art in long-document QA, long-video QA and long-context ASR, and match or surpass Gemini 1.0 Ultra's state-of-the-art performance across a broad set of benchmarks. Studying the limits of Gemini 1.5's long-context ability, we find continued improvement in next-token prediction and near-perfect retrieval (>99%) up to at least 10M tokens, a generational leap over existing models such as Claude 3.0 (200k) and GPT-4 Turbo (128k). Finally, we highlight real-world use cases, such as Gemini 1.5 collaborating with professionals on completing their tasks achieving 26 to 75% time savings across 10 different job categories, as well as surprising new capabilities of large language models at the frontier; when given a grammar manual for Kalamang, a language with fewer than 200 speakers worldwide, the model learns to translate English to Kalamang at a similar level to a person who learned from the same content.


From Text to Transformation: A Comprehensive Review of Large Language Models' Versatility

arXiv.org Artificial Intelligence

This groundbreaking study explores the expanse of Large Language Models (LLMs), such as Generative Pre-Trained Transformer (GPT) and Bidirectional Encoder Representations from Transformers (BERT) across varied domains ranging from technology, finance, healthcare to education. Despite their established prowess in Natural Language Processing (NLP), these LLMs have not been systematically examined for their impact on domains such as fitness, and holistic well-being, urban planning, climate modelling as well as disaster management. This review paper, in addition to furnishing a comprehensive analysis of the vast expanse and extent of LLMs' utility in diverse domains, recognizes the research gaps and realms where the potential of LLMs is yet to be harnessed. This study uncovers innovative ways in which LLMs can leave a mark in the fields like fitness and wellbeing, urban planning, climate modelling and disaster response which could inspire future researches and applications in the said avenues.


GRAPHGINI: Fostering Individual and Group Fairness in Graph Neural Networks

arXiv.org Artificial Intelligence

We address the growing apprehension that GNNs, in the absence of fairness constraints, might produce biased decisions that disproportionately affect underprivileged groups or individuals. Departing from previous work, we introduce for the first time a method for incorporating the Gini coefficient as a measure of fairness to be used within the GNN framework. Our proposal, GRAPHGINI, works with the two different goals of individual and group fairness in a single system, while maintaining high prediction accuracy. GRAPHGINI enforces individual fairness through learnable attention scores that help in aggregating more information through similar nodes. A heuristic-based maximum Nash social welfare constraint ensures the maximum possible group fairness. Both the individual fairness constraint and the group fairness constraint are stated in terms of a differentiable approximation of the Gini coefficient. This approximation is a contribution that is likely to be of interest even beyond the scope of the problem studied in this paper. Unlike other state-of-the-art, GRAPHGINI automatically balances all three optimization objectives (utility, individual, and group fairness) of the GNN and is free from any manual tuning of weight parameters. Extensive experimentation on real-world datasets showcases the efficacy of GRAPHGINI in making significant improvements in individual fairness compared to all currently available state-of-the-art methods while maintaining utility and group equality.


No prejudice! Fair Federated Graph Neural Networks for Personalized Recommendation

arXiv.org Artificial Intelligence

Ensuring fairness in Recommendation Systems (RSs) across demographic groups is critical due to the increased integration of RSs in applications such as personalized healthcare, finance, and e-commerce. Graph-based RSs play a crucial role in capturing intricate higher-order interactions among entities. However, integrating these graph models into the Federated Learning (FL) paradigm with fairness constraints poses formidable challenges as this requires access to the entire interaction graph and sensitive user information (such as gender, age, etc.) at the central server. This paper addresses the pervasive issue of inherent bias within RSs for different demographic groups without compromising the privacy of sensitive user attributes in FL environment with the graph-based model. To address the group bias, we propose F2PGNN (Fair Federated Personalized Graph Neural Network), a novel framework that leverages the power of Personalized Graph Neural Network (GNN) coupled with fairness considerations. Additionally, we use differential privacy techniques to fortify privacy protection. Experimental evaluation on three publicly available datasets showcases the efficacy of F2PGNN in mitigating group unfairness by 47% - 99% compared to the state-of-the-art while preserving privacy and maintaining the utility. The results validate the significance of our framework in achieving equitable and personalized recommendations using GNN within the FL landscape.