Not enough data to create a plot.
Try a different view from the menu above.
Kumar, Harshit
FIXME: Enhance Software Reliability with Hybrid Approaches in Cloud
Hwang, Jinho, Shwartz, Larisa, Wang, Qing, Batta, Raghav, Kumar, Harshit, Nidd, Michael
With the promise of reliability in cloud, more enterprises are migrating to cloud. The process of continuous integration/deployment (CICD) in cloud connects developers who need to deliver value faster and more transparently with site reliability engineers (SREs) who need to manage applications reliably. SREs feed back development issues to developers, and developers commit fixes and trigger CICD to redeploy. The release cycle is more continuous than ever, thus the code to production is faster and more automated. To provide this higher level agility, the cloud platforms become more complex in the face of flexibility with deeper layers of virtualization. However, reliability does not come for free with all these complexities. Software engineers and SREs need to deal with wider information spectrum from virtualized layers. Therefore, providing correlated information with true positive evidences is critical to identify the root cause of issues quickly in order to reduce mean time to recover (MTTR), performance metrics for SREs. Similarity, knowledge, or statistics driven approaches have been effective, but with increasing data volume and types, an individual approach is limited to correlate semantic relations of different data sources. In this paper, we introduce FIXME to enhance software reliability with hybrid diagnosis approaches for enterprises. Our evaluation results show using hybrid diagnosis approach is about 17% better in precision. The results are helpful for both practitioners and researchers to develop hybrid diagnosis in the highly dynamic cloud environment.
Multifaceted Context Representation using Dual Attention for Ontology Alignment
Iyer, Vivek, Agarwal, Arvind, Kumar, Harshit
Ontology Alignment is an important research problem that finds application in various fields such as data integration, data transfer, data preparation etc. State-of-the-art (SOTA) architectures in Ontology Alignment typically use naive domain-dependent approaches with handcrafted rules and manually assigned values, making them unscalable and inefficient. Deep Learning approaches for ontology alignment use domain-specific architectures that are not only in-extensible to other datasets and domains, but also typically perform worse than rule-based approaches due to various limitations including over-fitting of models, sparsity of datasets etc. In this work, we propose VeeAlign, a Deep Learning based model that uses a dual-attention mechanism to compute the contextualized representation of a concept in order to learn alignments. By doing so, not only does our approach exploit both syntactic and semantic structure of ontologies, it is also, by design, flexible and scalable to different domains with minimal effort. We validate our approach on various datasets from different domains and in multilingual settings, and show its superior performance over SOTA methods.
Neural Conversational QA: Learning to Reason v.s. Exploiting Patterns
Sharma, Abhishek, Contractor, Danish, Kumar, Harshit, Joshi, Sachindra
In this paper we work on the recently introduced ShARC task - a challenging form of conversational QA that requires reasoning over rules expressed in natural language. Attuned to the risk of superficial patterns in data being exploited by neural models to do well on benchmark tasks (Niven and Kao 2019), we conduct a series of probing experiments and demonstrate how current state-of-the-art models rely heavily on such patterns. To prevent models from learning based on the superficial clues, we modify the dataset by automatically generating new instances reducing the occurrences of those patterns. We also present a simple yet effective model that learns embedding representations to incorporate dialog history along with the previous answers to follow-up questions. We find that our model outperforms existing methods on all metrics, and the results show that the proposed model is more robust in dealing with spurious patterns and learns to reason meaningfully.