Kumar, Aviral
RRM: Robust Reward Model Training Mitigates Reward Hacking
Liu, Tianqi, Xiong, Wei, Ren, Jie, Chen, Lichang, Wu, Junru, Joshi, Rishabh, Gao, Yang, Shen, Jiaming, Qin, Zhen, Yu, Tianhe, Sohn, Daniel, Makarova, Anastasiia, Liu, Jeremiah, Liu, Yuan, Piot, Bilal, Ittycheriah, Abe, Kumar, Aviral, Saleh, Mohammad
Reward models (RMs) play a pivotal role in aligning large language models (LLMs) with human preferences. However, traditional RM training, which relies on response pairs tied to specific prompts, struggles to disentangle prompt-driven preferences from prompt-independent artifacts, such as response length and format. In this work, we expose a fundamental limitation of current RM training methods, where RMs fail to effectively distinguish between contextual signals and irrelevant artifacts when determining preferences. To address this, we introduce a causal framework that learns preferences independent of these artifacts and propose a novel data augmentation technique designed to eliminate them. Extensive experiments show that our approach successfully filters out undesirable artifacts, yielding a more robust reward model (RRM). Our RRM improves the performance of a pairwise reward model trained on Gemma-2-9b-it, on Reward-Bench, increasing accuracy from 80.61% to 84.15%. Additionally, we train two DPO policies using both the RM and RRM, demonstrating that the RRM significantly enhances DPO-aligned policies, improving MT-Bench scores from 7.27 to 8.31 and length-controlled win-rates in AlpacaEval-2 from 33.46% to 52.49%. Reinforcement Learning from Human Feedback (RLHF) has become a cornerstone in aligning large language models (LLMs) with human preferences to produce responses that are more helpful, honest, and harmless (Ouyang et al., 2022; Bai et al., 2022a). This approach involves training a reward model (RM) on human feedback, which then guides the LLM to generate high-quality responses through reinforcement learning.
RL on Incorrect Synthetic Data Scales the Efficiency of LLM Math Reasoning by Eight-Fold
Setlur, Amrith, Garg, Saurabh, Geng, Xinyang, Garg, Naman, Smith, Virginia, Kumar, Aviral
Training on model-generated synthetic data is a promising approach for finetuning LLMs, but it remains unclear when it helps or hurts. In this paper, we investigate this question for math reasoning via an empirical study, followed by building a conceptual understanding of our observations. First, we find that while the typical approach of finetuning a model on synthetic correct or positive problem-solution pairs generated by capable models offers modest performance gains, sampling more correct solutions from the finetuned learner itself followed by subsequent fine-tuning on this self-generated data $\textbf{doubles}$ the efficiency of the same synthetic problems. At the same time, training on model-generated positives can amplify various spurious correlations, resulting in flat or even inverse scaling trends as the amount of data increases. Surprisingly, we find that several of these issues can be addressed if we also utilize negative responses, i.e., model-generated responses that are deemed incorrect by a final answer verifier. Crucially, these negatives must be constructed such that the training can appropriately recover the utility or advantage of each intermediate step in the negative response. With this per-step scheme, we are able to attain consistent gains over only positive data, attaining performance similar to amplifying the amount of synthetic data by $\mathbf{8 \times}$. We show that training on per-step negatives can help to unlearn spurious correlations in the positive data, and is equivalent to advantage-weighted reinforcement learning (RL), implying that it inherits robustness benefits of RL over imitating positive data alone.
Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context
Gemini Team, null, Georgiev, Petko, Lei, Ving Ian, Burnell, Ryan, Bai, Libin, Gulati, Anmol, Tanzer, Garrett, Vincent, Damien, Pan, Zhufeng, Wang, Shibo, Mariooryad, Soroosh, Ding, Yifan, Geng, Xinyang, Alcober, Fred, Frostig, Roy, Omernick, Mark, Walker, Lexi, Paduraru, Cosmin, Sorokin, Christina, Tacchetti, Andrea, Gaffney, Colin, Daruki, Samira, Sercinoglu, Olcan, Gleicher, Zach, Love, Juliette, Voigtlaender, Paul, Jain, Rohan, Surita, Gabriela, Mohamed, Kareem, Blevins, Rory, Ahn, Junwhan, Zhu, Tao, Kawintiranon, Kornraphop, Firat, Orhan, Gu, Yiming, Zhang, Yujing, Rahtz, Matthew, Faruqui, Manaal, Clay, Natalie, Gilmer, Justin, Co-Reyes, JD, Penchev, Ivo, Zhu, Rui, Morioka, Nobuyuki, Hui, Kevin, Haridasan, Krishna, Campos, Victor, Mahdieh, Mahdis, Guo, Mandy, Hassan, Samer, Kilgour, Kevin, Vezer, Arpi, Cheng, Heng-Tze, de Liedekerke, Raoul, Goyal, Siddharth, Barham, Paul, Strouse, DJ, Noury, Seb, Adler, Jonas, Sundararajan, Mukund, Vikram, Sharad, Lepikhin, Dmitry, Paganini, Michela, Garcia, Xavier, Yang, Fan, Valter, Dasha, Trebacz, Maja, Vodrahalli, Kiran, Asawaroengchai, Chulayuth, Ring, Roman, Kalb, Norbert, Soares, Livio Baldini, Brahma, Siddhartha, Steiner, David, Yu, Tianhe, Mentzer, Fabian, He, Antoine, Gonzalez, Lucas, Xu, Bibo, Kaufman, Raphael Lopez, Shafey, Laurent El, Oh, Junhyuk, Hennigan, Tom, Driessche, George van den, Odoom, Seth, Lucic, Mario, Roelofs, Becca, Lall, Sid, Marathe, Amit, Chan, Betty, Ontanon, Santiago, He, Luheng, Teplyashin, Denis, Lai, Jonathan, Crone, Phil, Damoc, Bogdan, Ho, Lewis, Riedel, Sebastian, Lenc, Karel, Yeh, Chih-Kuan, Chowdhery, Aakanksha, Xu, Yang, Kazemi, Mehran, Amid, Ehsan, Petrushkina, Anastasia, Swersky, Kevin, Khodaei, Ali, Chen, Gowoon, Larkin, Chris, Pinto, Mario, Yan, Geng, Badia, Adria Puigdomenech, Patil, Piyush, Hansen, Steven, Orr, Dave, Arnold, Sebastien M. R., Grimstad, Jordan, Dai, Andrew, Douglas, Sholto, Sinha, Rishika, Yadav, Vikas, Chen, Xi, Gribovskaya, Elena, Austin, Jacob, Zhao, Jeffrey, Patel, Kaushal, Komarek, Paul, Austin, Sophia, Borgeaud, Sebastian, Friso, Linda, Goyal, Abhimanyu, Caine, Ben, Cao, Kris, Chung, Da-Woon, Lamm, Matthew, Barth-Maron, Gabe, Kagohara, Thais, Olszewska, Kate, Chen, Mia, Shivakumar, Kaushik, Agarwal, Rishabh, Godhia, Harshal, Rajwar, Ravi, Snaider, Javier, Dotiwalla, Xerxes, Liu, Yuan, Barua, Aditya, Ungureanu, Victor, Zhang, Yuan, Batsaikhan, Bat-Orgil, Wirth, Mateo, Qin, James, Danihelka, Ivo, Doshi, Tulsee, Chadwick, Martin, Chen, Jilin, Jain, Sanil, Le, Quoc, Kar, Arjun, Gurumurthy, Madhu, Li, Cheng, Sang, Ruoxin, Liu, Fangyu, Lamprou, Lampros, Munoz, Rich, Lintz, Nathan, Mehta, Harsh, Howard, Heidi, Reynolds, Malcolm, Aroyo, Lora, Wang, Quan, Blanco, Lorenzo, Cassirer, Albin, Griffith, Jordan, Das, Dipanjan, Lee, Stephan, Sygnowski, Jakub, Fisher, Zach, Besley, James, Powell, Richard, Ahmed, Zafarali, Paulus, Dominik, Reitter, David, Borsos, Zalan, Joshi, Rishabh, Pope, Aedan, Hand, Steven, Selo, Vittorio, Jain, Vihan, Sethi, Nikhil, Goel, Megha, Makino, Takaki, May, Rhys, Yang, Zhen, Schalkwyk, Johan, Butterfield, Christina, Hauth, Anja, Goldin, Alex, Hawkins, Will, Senter, Evan, Brin, Sergey, Woodman, Oliver, Ritter, Marvin, Noland, Eric, Giang, Minh, Bolina, Vijay, Lee, Lisa, Blyth, Tim, Mackinnon, Ian, Reid, Machel, Sarvana, Obaid, Silver, David, Chen, Alexander, Wang, Lily, Maggiore, Loren, Chang, Oscar, Attaluri, Nithya, Thornton, Gregory, Chiu, Chung-Cheng, Bunyan, Oskar, Levine, Nir, Chung, Timothy, Eltyshev, Evgenii, Si, Xiance, Lillicrap, Timothy, Brady, Demetra, Aggarwal, Vaibhav, Wu, Boxi, Xu, Yuanzhong, McIlroy, Ross, Badola, Kartikeya, Sandhu, Paramjit, Moreira, Erica, Stokowiec, Wojciech, Hemsley, Ross, Li, Dong, Tudor, Alex, Shyam, Pranav, Rahimtoroghi, Elahe, Haykal, Salem, Sprechmann, Pablo, Zhou, Xiang, Mincu, Diana, Li, Yujia, Addanki, Ravi, Krishna, Kalpesh, Wu, Xiao, Frechette, Alexandre, Eyal, Matan, Dafoe, Allan, Lacey, Dave, Whang, Jay, Avrahami, Thi, Zhang, Ye, Taropa, Emanuel, Lin, Hanzhao, Toyama, Daniel, Rutherford, Eliza, Sano, Motoki, Choe, HyunJeong, Tomala, Alex, Safranek-Shrader, Chalence, Kassner, Nora, Pajarskas, Mantas, Harvey, Matt, Sechrist, Sean, Fortunato, Meire, Lyu, Christina, Elsayed, Gamaleldin, Kuang, Chenkai, Lottes, James, Chu, Eric, Jia, Chao, Chen, Chih-Wei, Humphreys, Peter, Baumli, Kate, Tao, Connie, Samuel, Rajkumar, Santos, Cicero Nogueira dos, Andreassen, Anders, Rakićević, Nemanja, Grewe, Dominik, Kumar, Aviral, Winkler, Stephanie, Caton, Jonathan, Brock, Andrew, Dalmia, Sid, Sheahan, Hannah, Barr, Iain, Miao, Yingjie, Natsev, Paul, Devlin, Jacob, Behbahani, Feryal, Prost, Flavien, Sun, Yanhua, Myaskovsky, Artiom, Pillai, Thanumalayan Sankaranarayana, Hurt, Dan, Lazaridou, Angeliki, Xiong, Xi, Zheng, Ce, Pardo, Fabio, Li, Xiaowei, Horgan, Dan, Stanton, Joe, Ambar, Moran, Xia, Fei, Lince, Alejandro, Wang, Mingqiu, Mustafa, Basil, Webson, Albert, Lee, Hyo, Anil, Rohan, Wicke, Martin, Dozat, Timothy, Sinha, Abhishek, Piqueras, Enrique, Dabir, Elahe, Upadhyay, Shyam, Boral, Anudhyan, Hendricks, Lisa Anne, Fry, Corey, Djolonga, Josip, Su, Yi, Walker, Jake, Labanowski, Jane, Huang, Ronny, Misra, Vedant, Chen, Jeremy, Skerry-Ryan, RJ, Singh, Avi, Rijhwani, Shruti, Yu, Dian, Castro-Ros, Alex, Changpinyo, Beer, Datta, Romina, Bagri, Sumit, Hrafnkelsson, Arnar Mar, Maggioni, Marcello, Zheng, Daniel, Sulsky, Yury, Hou, Shaobo, Paine, Tom Le, Yang, Antoine, Riesa, Jason, Rogozinska, Dominika, Marcus, Dror, Badawy, Dalia El, Zhang, Qiao, Wang, Luyu, Miller, Helen, Greer, Jeremy, Sjos, Lars Lowe, Nova, Azade, Zen, Heiga, Chaabouni, Rahma, Rosca, Mihaela, Jiang, Jiepu, Chen, Charlie, Liu, Ruibo, Sainath, Tara, Krikun, Maxim, Polozov, Alex, Lespiau, Jean-Baptiste, Newlan, Josh, Cankara, Zeyncep, Kwak, Soo, Xu, Yunhan, Chen, Phil, Coenen, Andy, Meyer, Clemens, Tsihlas, Katerina, Ma, Ada, Gottweis, Juraj, Xing, Jinwei, Gu, Chenjie, Miao, Jin, Frank, Christian, Cankara, Zeynep, Ganapathy, Sanjay, Dasgupta, Ishita, Hughes-Fitt, Steph, Chen, Heng, Reid, David, Rong, Keran, Fan, Hongmin, van Amersfoort, Joost, Zhuang, Vincent, Cohen, Aaron, Gu, Shixiang Shane, Mohananey, Anhad, Ilic, Anastasija, Tobin, Taylor, Wieting, John, Bortsova, Anna, Thacker, Phoebe, Wang, Emma, Caveness, Emily, Chiu, Justin, Sezener, Eren, Kaskasoli, Alex, Baker, Steven, Millican, Katie, Elhawaty, Mohamed, Aisopos, Kostas, Lebsack, Carl, Byrd, Nathan, Dai, Hanjun, Jia, Wenhao, Wiethoff, Matthew, Davoodi, Elnaz, Weston, Albert, Yagati, Lakshman, Ahuja, Arun, Gao, Isabel, Pundak, Golan, Zhang, Susan, Azzam, Michael, Sim, Khe Chai, Caelles, Sergi, Keeling, James, Sharma, Abhanshu, Swing, Andy, Li, YaGuang, Liu, Chenxi, Bostock, Carrie Grimes, Bansal, Yamini, Nado, Zachary, Anand, Ankesh, Lipschultz, Josh, Karmarkar, Abhijit, Proleev, Lev, Ittycheriah, Abe, Yeganeh, Soheil Hassas, Polovets, George, Faust, Aleksandra, Sun, Jiao, Rrustemi, Alban, Li, Pen, Shivanna, Rakesh, Liu, Jeremiah, Welty, Chris, Lebron, Federico, Baddepudi, Anirudh, Krause, Sebastian, Parisotto, Emilio, Soricut, Radu, Xu, Zheng, Bloxwich, Dawn, Johnson, Melvin, Neyshabur, Behnam, Mao-Jones, Justin, Wang, Renshen, Ramasesh, Vinay, Abbas, Zaheer, Guez, Arthur, Segal, Constant, Nguyen, Duc Dung, Svensson, James, Hou, Le, York, Sarah, Milan, Kieran, Bridgers, Sophie, Gworek, Wiktor, Tagliasacchi, Marco, Lee-Thorp, James, Chang, Michael, Guseynov, Alexey, Hartman, Ale Jakse, Kwong, Michael, Zhao, Ruizhe, Kashem, Sheleem, Cole, Elizabeth, Miech, Antoine, Tanburn, Richard, Phuong, Mary, Pavetic, Filip, Cevey, Sebastien, Comanescu, Ramona, Ives, Richard, Yang, Sherry, Du, Cosmo, Li, Bo, Zhang, Zizhao, Iinuma, Mariko, Hu, Clara Huiyi, Roy, Aurko, Bijwadia, Shaan, Zhu, Zhenkai, Martins, Danilo, Saputro, Rachel, Gergely, Anita, Zheng, Steven, Jia, Dawei, Antonoglou, Ioannis, Sadovsky, Adam, Gu, Shane, Bi, Yingying, Andreev, Alek, Samangooei, Sina, Khan, Mina, Kocisky, Tomas, Filos, Angelos, Kumar, Chintu, Bishop, Colton, Yu, Adams, Hodkinson, Sarah, Mittal, Sid, Shah, Premal, Moufarek, Alexandre, Cheng, Yong, Bloniarz, Adam, Lee, Jaehoon, Pejman, Pedram, Michel, Paul, Spencer, Stephen, Feinberg, Vladimir, Xiong, Xuehan, Savinov, Nikolay, Smith, Charlotte, Shakeri, Siamak, Tran, Dustin, Chesus, Mary, Bohnet, Bernd, Tucker, George, von Glehn, Tamara, Muir, Carrie, Mao, Yiran, Kazawa, Hideto, Slone, Ambrose, Soparkar, Kedar, Shrivastava, Disha, Cobon-Kerr, James, Sharman, Michael, Pavagadhi, Jay, Araya, Carlos, Misiunas, Karolis, Ghelani, Nimesh, Laskin, Michael, Barker, David, Li, Qiujia, Briukhov, Anton, Houlsby, Neil, Glaese, Mia, Lakshminarayanan, Balaji, Schucher, Nathan, Tang, Yunhao, Collins, Eli, Lim, Hyeontaek, Feng, Fangxiaoyu, Recasens, Adria, Lai, Guangda, Magni, Alberto, De Cao, Nicola, Siddhant, Aditya, Ashwood, Zoe, Orbay, Jordi, Dehghani, Mostafa, Brennan, Jenny, He, Yifan, Xu, Kelvin, Gao, Yang, Saroufim, Carl, Molloy, James, Wu, Xinyi, Arnold, Seb, Chang, Solomon, Schrittwieser, Julian, Buchatskaya, Elena, Radpour, Soroush, Polacek, Martin, Giordano, Skye, Bapna, Ankur, Tokumine, Simon, Hellendoorn, Vincent, Sottiaux, Thibault, Cogan, Sarah, Severyn, Aliaksei, Saleh, Mohammad, Thakoor, Shantanu, Shefey, Laurent, Qiao, Siyuan, Gaba, Meenu, Chang, Shuo-yiin, Swanson, Craig, Zhang, Biao, Lee, Benjamin, Rubenstein, Paul Kishan, Song, Gan, Kwiatkowski, Tom, Koop, Anna, Kannan, Ajay, Kao, David, Schuh, Parker, Stjerngren, Axel, Ghiasi, Golnaz, Gibson, Gena, Vilnis, Luke, Yuan, Ye, Ferreira, Felipe Tiengo, Kamath, Aishwarya, Klimenko, Ted, Franko, Ken, Xiao, Kefan, Bhattacharya, Indro, Patel, Miteyan, Wang, Rui, Morris, Alex, Strudel, Robin, Sharma, Vivek, Choy, Peter, Hashemi, Sayed Hadi, Landon, Jessica, Finkelstein, Mara, Jhakra, Priya, Frye, Justin, Barnes, Megan, Mauger, Matthew, Daun, Dennis, Baatarsukh, Khuslen, Tung, Matthew, Farhan, Wael, Michalewski, Henryk, Viola, Fabio, Quitry, Felix de Chaumont, Lan, Charline Le, Hudson, Tom, Wang, Qingze, Fischer, Felix, Zheng, Ivy, White, Elspeth, Dragan, Anca, Alayrac, Jean-baptiste, Ni, Eric, Pritzel, Alexander, Iwanicki, Adam, Isard, Michael, Bulanova, Anna, Zilka, Lukas, Dyer, Ethan, Sachan, Devendra, Srinivasan, Srivatsan, Muckenhirn, Hannah, Cai, Honglong, Mandhane, Amol, Tariq, Mukarram, Rae, Jack W., Wang, Gary, Ayoub, Kareem, FitzGerald, Nicholas, Zhao, Yao, Han, Woohyun, Alberti, Chris, Garrette, Dan, Krishnakumar, Kashyap, Gimenez, Mai, Levskaya, Anselm, Sohn, Daniel, Matak, Josip, Iturrate, Inaki, Chang, Michael B., Xiang, Jackie, Cao, Yuan, Ranka, Nishant, Brown, Geoff, Hutter, Adrian, Mirrokni, Vahab, Chen, Nanxin, Yao, Kaisheng, Egyed, Zoltan, Galilee, Francois, Liechty, Tyler, Kallakuri, Praveen, Palmer, Evan, Ghemawat, Sanjay, Liu, Jasmine, Tao, David, Thornton, Chloe, Green, Tim, Jasarevic, Mimi, Lin, Sharon, Cotruta, Victor, Tan, Yi-Xuan, Fiedel, Noah, Yu, Hongkun, Chi, Ed, Neitz, Alexander, Heitkaemper, Jens, Sinha, Anu, Zhou, Denny, Sun, Yi, Kaed, Charbel, Hulse, Brice, Mishra, Swaroop, Georgaki, Maria, Kudugunta, Sneha, Farabet, Clement, Shafran, Izhak, Vlasic, Daniel, Tsitsulin, Anton, Ananthanarayanan, Rajagopal, Carin, Alen, Su, Guolong, Sun, Pei, V, Shashank, Carvajal, Gabriel, Broder, Josef, Comsa, Iulia, Repina, Alena, Wong, William, Chen, Warren Weilun, Hawkins, Peter, Filonov, Egor, Loher, Lucia, Hirnschall, Christoph, Wang, Weiyi, Ye, Jingchen, Burns, Andrea, Cate, Hardie, Wright, Diana Gage, Piccinini, Federico, Zhang, Lei, Lin, Chu-Cheng, Gog, Ionel, Kulizhskaya, Yana, Sreevatsa, Ashwin, Song, Shuang, Cobo, Luis C., Iyer, Anand, Tekur, Chetan, Garrido, Guillermo, Xiao, Zhuyun, Kemp, Rupert, Zheng, Huaixiu Steven, Li, Hui, Agarwal, Ananth, Ngani, Christel, Goshvadi, Kati, Santamaria-Fernandez, Rebeca, Fica, Wojciech, Chen, Xinyun, Gorgolewski, Chris, Sun, Sean, Garg, Roopal, Ye, Xinyu, Eslami, S. M. Ali, Hua, Nan, Simon, Jon, Joshi, Pratik, Kim, Yelin, Tenney, Ian, Potluri, Sahitya, Thiet, Lam Nguyen, Yuan, Quan, Luisier, Florian, Chronopoulou, Alexandra, Scellato, Salvatore, Srinivasan, Praveen, Chen, Minmin, Koverkathu, Vinod, Dalibard, Valentin, Xu, Yaming, Saeta, Brennan, Anderson, Keith, Sellam, Thibault, Fernando, Nick, Huot, Fantine, Jung, Junehyuk, Varadarajan, Mani, Quinn, Michael, Raul, Amit, Le, Maigo, Habalov, Ruslan, Clark, Jon, Jalan, Komal, Bullard, Kalesha, Singhal, Achintya, Luong, Thang, Wang, Boyu, Rajayogam, Sujeevan, Eisenschlos, Julian, Jia, Johnson, Finchelstein, Daniel, Yakubovich, Alex, Balle, Daniel, Fink, Michael, Agarwal, Sameer, Li, Jing, Dvijotham, Dj, Pal, Shalini, Kang, Kai, Konzelmann, Jaclyn, Beattie, Jennifer, Dousse, Olivier, Wu, Diane, Crocker, Remi, Elkind, Chen, Jonnalagadda, Siddhartha Reddy, Lee, Jong, Holtmann-Rice, Dan, Kallarackal, Krystal, Liu, Rosanne, Vnukov, Denis, Vats, Neera, Invernizzi, Luca, Jafari, Mohsen, Zhou, Huanjie, Taylor, Lilly, Prendki, Jennifer, Wu, Marcus, Eccles, Tom, Liu, Tianqi, Kopparapu, Kavya, Beaufays, Francoise, Angermueller, Christof, Marzoca, Andreea, Sarcar, Shourya, Dib, Hilal, Stanway, Jeff, Perbet, Frank, Trdin, Nejc, Sterneck, Rachel, Khorlin, Andrey, Li, Dinghua, Wu, Xihui, Goenka, Sonam, Madras, David, Goldshtein, Sasha, Gierke, Willi, Zhou, Tong, Liu, Yaxin, Liang, Yannie, White, Anais, Li, Yunjie, Singh, Shreya, Bahargam, Sanaz, Epstein, Mark, Basu, Sujoy, Lao, Li, Ozturel, Adnan, Crous, Carl, Zhai, Alex, Lu, Han, Tung, Zora, Gaur, Neeraj, Walton, Alanna, Dixon, Lucas, Zhang, Ming, Globerson, Amir, Uy, Grant, Bolt, Andrew, Wiles, Olivia, Nasr, Milad, Shumailov, Ilia, Selvi, Marco, Piccinno, Francesco, Aguilar, Ricardo, McCarthy, Sara, Khalman, Misha, Shukla, Mrinal, Galic, Vlado, Carpenter, John, Villela, Kevin, Zhang, Haibin, Richardson, Harry, Martens, James, Bosnjak, Matko, Belle, Shreyas Rammohan, Seibert, Jeff, Alnahlawi, Mahmoud, McWilliams, Brian, Singh, Sankalp, Louis, Annie, Ding, Wen, Popovici, Dan, Simicich, Lenin, Knight, Laura, Mehta, Pulkit, Gupta, Nishesh, Shi, Chongyang, Fatehi, Saaber, Mitrovic, Jovana, Grills, Alex, Pagadora, Joseph, Petrova, Dessie, Eisenbud, Danielle, Zhang, Zhishuai, Yates, Damion, Mittal, Bhavishya, Tripuraneni, Nilesh, Assael, Yannis, Brovelli, Thomas, Jain, Prateek, Velimirovic, Mihajlo, Akbulut, Canfer, Mu, Jiaqi, Macherey, Wolfgang, Kumar, Ravin, Xu, Jun, Qureshi, Haroon, Comanici, Gheorghe, Wiesner, Jeremy, Gong, Zhitao, Ruddock, Anton, Bauer, Matthias, Felt, Nick, GP, Anirudh, Arnab, Anurag, Zelle, Dustin, Rothfuss, Jonas, Rosgen, Bill, Shenoy, Ashish, Seybold, Bryan, Li, Xinjian, Mudigonda, Jayaram, Erdogan, Goker, Xia, Jiawei, Simsa, Jiri, Michi, Andrea, Yao, Yi, Yew, Christopher, Kan, Steven, Caswell, Isaac, Radebaugh, Carey, Elisseeff, Andre, Valenzuela, Pedro, McKinney, Kay, Paterson, Kim, Cui, Albert, Latorre-Chimoto, Eri, Kim, Solomon, Zeng, William, Durden, Ken, Ponnapalli, Priya, Sosea, Tiberiu, Choquette-Choo, Christopher A., Manyika, James, Robenek, Brona, Vashisht, Harsha, Pereira, Sebastien, Lam, Hoi, Velic, Marko, Owusu-Afriyie, Denese, Lee, Katherine, Bolukbasi, Tolga, Parrish, Alicia, Lu, Shawn, Park, Jane, Venkatraman, Balaji, Talbert, Alice, Rosique, Lambert, Cheng, Yuchung, Sozanschi, Andrei, Paszke, Adam, Kumar, Praveen, Austin, Jessica, Li, Lu, Salama, Khalid, Kim, Wooyeol, Dukkipati, Nandita, Baryshnikov, Anthony, Kaplanis, Christos, Sheng, XiangHai, Chervonyi, Yuri, Unlu, Caglar, Casas, Diego de Las, Askham, Harry, Tunyasuvunakool, Kathryn, Gimeno, Felix, Poder, Siim, Kwak, Chester, Miecnikowski, Matt, Mirrokni, Vahab, Dimitriev, Alek, Parisi, Aaron, Liu, Dangyi, Tsai, Tomy, Shevlane, Toby, Kouridi, Christina, Garmon, Drew, Goedeckemeyer, Adrian, Brown, Adam R., Vijayakumar, Anitha, Elqursh, Ali, Jazayeri, Sadegh, Huang, Jin, Carthy, Sara Mc, Hoover, Jay, Kim, Lucy, Kumar, Sandeep, Chen, Wei, Biles, Courtney, Bingham, Garrett, Rosen, Evan, Wang, Lisa, Tan, Qijun, Engel, David, Pongetti, Francesco, de Cesare, Dario, Hwang, Dongseong, Yu, Lily, Pullman, Jennifer, Narayanan, Srini, Levin, Kyle, Gopal, Siddharth, Li, Megan, Aharoni, Asaf, Trinh, Trieu, Lo, Jessica, Casagrande, Norman, Vij, Roopali, Matthey, Loic, Ramadhana, Bramandia, Matthews, Austin, Carey, CJ, Johnson, Matthew, Goranova, Kremena, Shah, Rohin, Ashraf, Shereen, Dasgupta, Kingshuk, Larsen, Rasmus, Wang, Yicheng, Vuyyuru, Manish Reddy, Jiang, Chong, Ijazi, Joana, Osawa, Kazuki, Smith, Celine, Boppana, Ramya Sree, Bilal, Taylan, Koizumi, Yuma, Xu, Ying, Altun, Yasemin, Shabat, Nir, Bariach, Ben, Korchemniy, Alex, Choo, Kiam, Ronneberger, Olaf, Iwuanyanwu, Chimezie, Zhao, Shubin, Soergel, David, Hsieh, Cho-Jui, Cai, Irene, Iqbal, Shariq, Sundermeyer, Martin, Chen, Zhe, Bursztein, Elie, Malaviya, Chaitanya, Biadsy, Fadi, Shroff, Prakash, Dhillon, Inderjit, Latkar, Tejasi, Dyer, Chris, Forbes, Hannah, Nicosia, Massimo, Nikolaev, Vitaly, Greene, Somer, Georgiev, Marin, Wang, Pidong, Martin, Nina, Sedghi, Hanie, Zhang, John, Banzal, Praseem, Fritz, Doug, Rao, Vikram, Wang, Xuezhi, Zhang, Jiageng, Patraucean, Viorica, Du, Dayou, Mordatch, Igor, Jurin, Ivan, Liu, Lewis, Dubey, Ayush, Mohan, Abhi, Nowakowski, Janek, Ion, Vlad-Doru, Wei, Nan, Tojo, Reiko, Raad, Maria Abi, Hudson, Drew A., Keshava, Vaishakh, Agrawal, Shubham, Ramirez, Kevin, Wu, Zhichun, Nguyen, Hoang, Liu, Ji, Sewak, Madhavi, Petrini, Bryce, Choi, DongHyun, Philips, Ivan, Wang, Ziyue, Bica, Ioana, Garg, Ankush, Wilkiewicz, Jarek, Agrawal, Priyanka, Li, Xiaowei, Guo, Danhao, Xue, Emily, Shaik, Naseer, Leach, Andrew, Khan, Sadh MNM, Wiesinger, Julia, Jerome, Sammy, Chakladar, Abhishek, Wang, Alek Wenjiao, Ornduff, Tina, Abu, Folake, Ghaffarkhah, Alireza, Wainwright, Marcus, Cortes, Mario, Liu, Frederick, Maynez, Joshua, Petrov, Slav, Wu, Yonghui, Hassabis, Demis, Kavukcuoglu, Koray, Dean, Jeffrey, Vinyals, Oriol
In this report, we introduce the Gemini 1.5 family of models, representing the next generation of highly compute-efficient multimodal models capable of recalling and reasoning over fine-grained information from millions of tokens of context, including multiple long documents and hours of video and audio. The family includes two new models: (1) an updated Gemini 1.5 Pro, which exceeds the February version on the great majority of capabilities and benchmarks; (2) Gemini 1.5 Flash, a more lightweight variant designed for efficiency with minimal regression in quality. Gemini 1.5 models achieve near-perfect recall on long-context retrieval tasks across modalities, improve the state-of-the-art in long-document QA, long-video QA and long-context ASR, and match or surpass Gemini 1.0 Ultra's state-of-the-art performance across a broad set of benchmarks. Studying the limits of Gemini 1.5's long-context ability, we find continued improvement in next-token prediction and near-perfect retrieval (>99%) up to at least 10M tokens, a generational leap over existing models such as Claude 3.0 (200k) and GPT-4 Turbo (128k). Finally, we highlight real-world use cases, such as Gemini 1.5 collaborating with professionals on completing their tasks achieving 26 to 75% time savings across 10 different job categories, as well as surprising new capabilities of large language models at the frontier; when given a grammar manual for Kalamang, a language with fewer than 200 speakers worldwide, the model learns to translate English to Kalamang at a similar level to a person who learned from the same content.
Preference Fine-Tuning of LLMs Should Leverage Suboptimal, On-Policy Data
Tajwar, Fahim, Singh, Anikait, Sharma, Archit, Rafailov, Rafael, Schneider, Jeff, Xie, Tengyang, Ermon, Stefano, Finn, Chelsea, Kumar, Aviral
Learning from preference labels plays a crucial role in fine-tuning large language models. There are several distinct approaches for preference fine-tuning, including supervised learning, on-policy reinforcement learning (RL), and contrastive learning. Different methods come with different implementation tradeoffs and performance differences, and existing empirical findings present different conclusions, for instance, some results show that online RL is quite important to attain good fine-tuning results, while others find (offline) contrastive or even purely supervised methods sufficient. This raises a natural question: what kind of approaches are important for fine-tuning with preference data and why? In this paper, we answer this question by performing a rigorous analysis of a number of fine-tuning techniques on didactic and full-scale LLM problems. Our main finding is that, in general, approaches that use on-policy sampling or attempt to push down the likelihood on certain responses (i.e., employ a "negative gradient") outperform offline and maximum likelihood objectives. We conceptualize our insights and unify methods that use on-policy sampling or negative gradient under a notion of mode-seeking objectives for categorical distributions. Mode-seeking objectives are able to alter probability mass on specific bins of a categorical distribution at a fast rate compared to maximum likelihood, allowing them to relocate masses across bins more effectively. Our analysis prescribes actionable insights for preference fine-tuning of LLMs and informs how data should be collected for maximal improvement.
Unfamiliar Finetuning Examples Control How Language Models Hallucinate
Kang, Katie, Wallace, Eric, Tomlin, Claire, Kumar, Aviral, Levine, Sergey
Large language models are known to hallucinate when faced with unfamiliar queries, but the underlying mechanism that govern how models hallucinate are not yet fully understood. In this work, we find that unfamiliar examples in the models' finetuning data -- those that introduce concepts beyond the base model's scope of knowledge -- are crucial in shaping these errors. In particular, we find that an LLM's hallucinated predictions tend to mirror the responses associated with its unfamiliar finetuning examples. This suggests that by modifying how unfamiliar finetuning examples are supervised, we can influence a model's responses to unfamiliar queries (e.g., say ``I don't know''). We empirically validate this observation in a series of controlled experiments involving SFT, RL, and reward model finetuning on TriviaQA and MMLU. Our work further investigates RL finetuning strategies for improving the factuality of long-form model generations. We find that, while hallucinations from the reward model can significantly undermine the effectiveness of RL factuality finetuning, strategically controlling how reward models hallucinate can minimize these negative effects. Leveraging our previous observations on controlling hallucinations, we propose an approach for learning more reliable reward models, and show that they improve the efficacy of RL factuality finetuning in long-form biography and book/movie plot generation tasks.
Stop Regressing: Training Value Functions via Classification for Scalable Deep RL
Farebrother, Jesse, Orbay, Jordi, Vuong, Quan, Taïga, Adrien Ali, Chebotar, Yevgen, Xiao, Ted, Irpan, Alex, Levine, Sergey, Castro, Pablo Samuel, Faust, Aleksandra, Kumar, Aviral, Agarwal, Rishabh
Value functions are a central component of deep reinforcement learning (RL). These functions, parameterized by neural networks, are trained using a mean squared error regression objective to match bootstrapped target values. However, scaling value-based RL methods that use regression to large networks, such as high-capacity Transformers, has proven challenging. This difficulty is in stark contrast to supervised learning: by leveraging a cross-entropy classification loss, supervised methods have scaled reliably to massive networks. Observing this discrepancy, in this paper, we investigate whether the scalability of deep RL can also be improved simply by using classification in place of regression for training value functions. We demonstrate that value functions trained with categorical cross-entropy significantly improves performance and scalability in a variety of domains. These include: single-task RL on Atari 2600 games with SoftMoEs, multi-task RL on Atari with large-scale ResNets, robotic manipulation with Q-transformers, playing Chess without search, and a language-agent Wordle task with high-capacity Transformers, achieving state-of-the-art results on these domains. Through careful analysis, we show that the benefits of categorical cross-entropy primarily stem from its ability to mitigate issues inherent to value-based RL, such as noisy targets and non-stationarity. Overall, we argue that a simple shift to training value functions with categorical cross-entropy can yield substantial improvements in the scalability of deep RL at little-to-no cost.
ArCHer: Training Language Model Agents via Hierarchical Multi-Turn RL
Zhou, Yifei, Zanette, Andrea, Pan, Jiayi, Levine, Sergey, Kumar, Aviral
A broad use case of large language models (LLMs) is in goal-directed decision-making tasks (or "agent" tasks), where an LLM needs to not just generate completions for a given prompt, but rather make intelligent decisions over a multi-turn interaction to accomplish a task (e.g., when interacting with the web, using tools, or providing customer support). Reinforcement learning (RL) provides a general paradigm to address such agent tasks, but current RL methods for LLMs largely focus on optimizing single-turn rewards. By construction, most single-turn RL methods cannot endow LLMs with the ability to intelligently seek information over multiple turns, perform credit assignment, or reason about their past actions -- all of which are critical in agent tasks. This raises the question: how can we design effective and efficient multi-turn RL algorithms for LLMs? In this paper, we develop a framework for building multi-turn RL algorithms for fine-tuning LLMs, that preserves the flexibility of existing single-turn RL methods for LLMs (e.g., proximal policy optimization), while accommodating multiple turns, long horizons, and delayed rewards effectively. To do this, our framework adopts a hierarchical RL approach and runs two RL algorithms in parallel: a high-level off-policy value-based RL algorithm to aggregate reward over utterances, and a low-level RL algorithm that utilizes this high-level value function to train a token policy within each utterance or turn. Our hierarchical framework, Actor-Critic Framework with a Hierarchical Structure (ArCHer), can also give rise to other RL methods. Empirically, we find that ArCHer significantly improves efficiency and performance on agent tasks, attaining a sample efficiency of about 100x over existing methods, while also improving with larger model capacity (upto the 7 billion scale that we tested on).
Vision-Language Models Provide Promptable Representations for Reinforcement Learning
Chen, William, Mees, Oier, Kumar, Aviral, Levine, Sergey
Humans can quickly learn new behaviors by leveraging background world knowledge. In contrast, agents trained with reinforcement learning (RL) typically learn behaviors from scratch. We thus propose a novel approach that uses the vast amounts of general and indexable world knowledge encoded in vision-language models (VLMs) pre-trained on Internet-scale data for embodied RL. We initialize policies with VLMs by using them as promptable representations: embeddings that are grounded in visual observations and encode semantic features based on the VLM's internal knowledge, as elicited through prompts that provide task context and auxiliary information. We evaluate our approach on visually-complex, long horizon RL tasks in Minecraft and robot navigation in Habitat. We find that our policies trained on embeddings extracted from general-purpose VLMs outperform equivalent policies trained on generic, non-promptable image embeddings. We also find our approach outperforms instruction-following methods and performs comparably to domain-specific embeddings.
Cal-QL: Calibrated Offline RL Pre-Training for Efficient Online Fine-Tuning
Nakamoto, Mitsuhiko, Zhai, Yuexiang, Singh, Anikait, Mark, Max Sobol, Ma, Yi, Finn, Chelsea, Kumar, Aviral, Levine, Sergey
A compelling use case of offline reinforcement learning (RL) is to obtain a policy initialization from existing datasets followed by fast online fine-tuning with limited interaction. However, existing offline RL methods tend to behave poorly during fine-tuning. In this paper, we devise an approach for learning an effective initialization from offline data that also enables fast online fine-tuning capabilities. Our approach, calibrated Q-learning (Cal-QL), accomplishes this by learning a conservative value function initialization that underestimates the value of the learned policy from offline data, while also being calibrated, in the sense that the learned Q-values are at a reasonable scale. We refer to this property as calibration, and define it formally as providing a lower bound on the true value function of the learned policy and an upper bound on the value of some other (suboptimal) reference policy, which may simply be the behavior policy. We show that offline RL algorithms that learn such calibrated value functions lead to effective online fine-tuning, enabling us to take the benefits of offline initializations in online fine-tuning. In practice, Cal-QL can be implemented on top of the conservative Q learning (CQL) for offline RL within a one-line code change. Empirically, Cal-QL outperforms state-of-the-art methods on 9/11 fine-tuning benchmark tasks that we study in this paper. Code and video are available at https://nakamotoo.github.io/Cal-QL
Gemini: A Family of Highly Capable Multimodal Models
Gemini Team, null, Anil, Rohan, Borgeaud, Sebastian, Wu, Yonghui, Alayrac, Jean-Baptiste, Yu, Jiahui, Soricut, Radu, Schalkwyk, Johan, Dai, Andrew M., Hauth, Anja, Millican, Katie, Silver, David, Petrov, Slav, Johnson, Melvin, Antonoglou, Ioannis, Schrittwieser, Julian, Glaese, Amelia, Chen, Jilin, Pitler, Emily, Lillicrap, Timothy, Lazaridou, Angeliki, Firat, Orhan, Molloy, James, Isard, Michael, Barham, Paul R., Hennigan, Tom, Lee, Benjamin, Viola, Fabio, Reynolds, Malcolm, Xu, Yuanzhong, Doherty, Ryan, Collins, Eli, Meyer, Clemens, Rutherford, Eliza, Moreira, Erica, Ayoub, Kareem, Goel, Megha, Tucker, George, Piqueras, Enrique, Krikun, Maxim, Barr, Iain, Savinov, Nikolay, Danihelka, Ivo, Roelofs, Becca, White, Anaïs, Andreassen, Anders, von Glehn, Tamara, Yagati, Lakshman, Kazemi, Mehran, Gonzalez, Lucas, Khalman, Misha, Sygnowski, Jakub, Frechette, Alexandre, Smith, Charlotte, Culp, Laura, Proleev, Lev, Luan, Yi, Chen, Xi, Lottes, James, Schucher, Nathan, Lebron, Federico, Rrustemi, Alban, Clay, Natalie, Crone, Phil, Kocisky, Tomas, Zhao, Jeffrey, Perz, Bartek, Yu, Dian, Howard, Heidi, Bloniarz, Adam, Rae, Jack W., Lu, Han, Sifre, Laurent, Maggioni, Marcello, Alcober, Fred, Garrette, Dan, Barnes, Megan, Thakoor, Shantanu, Austin, Jacob, Barth-Maron, Gabriel, Wong, William, Joshi, Rishabh, Chaabouni, Rahma, Fatiha, Deeni, Ahuja, Arun, Liu, Ruibo, Li, Yunxuan, Cogan, Sarah, Chen, Jeremy, Jia, Chao, Gu, Chenjie, Zhang, Qiao, Grimstad, Jordan, Hartman, Ale Jakse, Chadwick, Martin, Tomar, Gaurav Singh, Garcia, Xavier, Senter, Evan, Taropa, Emanuel, Pillai, Thanumalayan Sankaranarayana, Devlin, Jacob, Laskin, Michael, Casas, Diego de Las, Valter, Dasha, Tao, Connie, Blanco, Lorenzo, Badia, Adrià Puigdomènech, Reitter, David, Chen, Mianna, Brennan, Jenny, Rivera, Clara, Brin, Sergey, Iqbal, Shariq, Surita, Gabriela, Labanowski, Jane, Rao, Abhi, Winkler, Stephanie, Parisotto, Emilio, Gu, Yiming, Olszewska, Kate, Zhang, Yujing, Addanki, Ravi, Miech, Antoine, Louis, Annie, Shafey, Laurent El, Teplyashin, Denis, Brown, Geoff, Catt, Elliot, Attaluri, Nithya, Balaguer, Jan, Xiang, Jackie, Wang, Pidong, Ashwood, Zoe, Briukhov, Anton, Webson, Albert, Ganapathy, Sanjay, Sanghavi, Smit, Kannan, Ajay, Chang, Ming-Wei, Stjerngren, Axel, Djolonga, Josip, Sun, Yuting, Bapna, Ankur, Aitchison, Matthew, Pejman, Pedram, Michalewski, Henryk, Yu, Tianhe, Wang, Cindy, Love, Juliette, Ahn, Junwhan, Bloxwich, Dawn, Han, Kehang, Humphreys, Peter, Sellam, Thibault, Bradbury, James, Godbole, Varun, Samangooei, Sina, Damoc, Bogdan, Kaskasoli, Alex, Arnold, Sébastien M. R., Vasudevan, Vijay, Agrawal, Shubham, Riesa, Jason, Lepikhin, Dmitry, Tanburn, Richard, Srinivasan, Srivatsan, Lim, Hyeontaek, Hodkinson, Sarah, Shyam, Pranav, Ferret, Johan, Hand, Steven, Garg, Ankush, Paine, Tom Le, Li, Jian, Li, Yujia, Giang, Minh, Neitz, Alexander, Abbas, Zaheer, York, Sarah, Reid, Machel, Cole, Elizabeth, Chowdhery, Aakanksha, Das, Dipanjan, Rogozińska, Dominika, Nikolaev, Vitaly, Sprechmann, Pablo, Nado, Zachary, Zilka, Lukas, Prost, Flavien, He, Luheng, Monteiro, Marianne, Mishra, Gaurav, Welty, Chris, Newlan, Josh, Jia, Dawei, Allamanis, Miltiadis, Hu, Clara Huiyi, de Liedekerke, Raoul, Gilmer, Justin, Saroufim, Carl, Rijhwani, Shruti, Hou, Shaobo, Shrivastava, Disha, Baddepudi, Anirudh, Goldin, Alex, Ozturel, Adnan, Cassirer, Albin, Xu, Yunhan, Sohn, Daniel, Sachan, Devendra, Amplayo, Reinald Kim, Swanson, Craig, Petrova, Dessie, Narayan, Shashi, Guez, Arthur, Brahma, Siddhartha, Landon, Jessica, Patel, Miteyan, Zhao, Ruizhe, Villela, Kevin, Wang, Luyu, Jia, Wenhao, Rahtz, Matthew, Giménez, Mai, Yeung, Legg, Lin, Hanzhao, Keeling, James, Georgiev, Petko, Mincu, Diana, Wu, Boxi, Haykal, Salem, Saputro, Rachel, Vodrahalli, Kiran, Qin, James, Cankara, Zeynep, Sharma, Abhanshu, Fernando, Nick, Hawkins, Will, Neyshabur, Behnam, Kim, Solomon, Hutter, Adrian, Agrawal, Priyanka, Castro-Ros, Alex, Driessche, George van den, Wang, Tao, Yang, Fan, Chang, Shuo-yiin, Komarek, Paul, McIlroy, Ross, Lučić, Mario, Zhang, Guodong, Farhan, Wael, Sharman, Michael, Natsev, Paul, Michel, Paul, Cheng, Yong, Bansal, Yamini, Qiao, Siyuan, Cao, Kris, Shakeri, Siamak, Butterfield, Christina, Chung, Justin, Rubenstein, Paul Kishan, Agrawal, Shivani, Mensch, Arthur, Soparkar, Kedar, Lenc, Karel, Chung, Timothy, Pope, Aedan, Maggiore, Loren, Kay, Jackie, Jhakra, Priya, Wang, Shibo, Maynez, Joshua, Phuong, Mary, Tobin, Taylor, Tacchetti, Andrea, Trebacz, Maja, Robinson, Kevin, Katariya, Yash, Riedel, Sebastian, Bailey, Paige, Xiao, Kefan, Ghelani, Nimesh, Aroyo, Lora, Slone, Ambrose, Houlsby, Neil, Xiong, Xuehan, Yang, Zhen, Gribovskaya, Elena, Adler, Jonas, Wirth, Mateo, Lee, Lisa, Li, Music, Kagohara, Thais, Pavagadhi, Jay, Bridgers, Sophie, Bortsova, Anna, Ghemawat, Sanjay, Ahmed, Zafarali, Liu, Tianqi, Powell, Richard, Bolina, Vijay, Iinuma, Mariko, Zablotskaia, Polina, Besley, James, Chung, Da-Woon, Dozat, Timothy, Comanescu, Ramona, Si, Xiance, Greer, Jeremy, Su, Guolong, Polacek, Martin, Kaufman, Raphaël Lopez, Tokumine, Simon, Hu, Hexiang, Buchatskaya, Elena, Miao, Yingjie, Elhawaty, Mohamed, Siddhant, Aditya, Tomasev, Nenad, Xing, Jinwei, Greer, Christina, Miller, Helen, Ashraf, Shereen, Roy, Aurko, Zhang, Zizhao, Ma, Ada, Filos, Angelos, Besta, Milos, Blevins, Rory, Klimenko, Ted, Yeh, Chih-Kuan, Changpinyo, Soravit, Mu, Jiaqi, Chang, Oscar, Pajarskas, Mantas, Muir, Carrie, Cohen, Vered, Lan, Charline Le, Haridasan, Krishna, Marathe, Amit, Hansen, Steven, Douglas, Sholto, Samuel, Rajkumar, Wang, Mingqiu, Austin, Sophia, Lan, Chang, Jiang, Jiepu, Chiu, Justin, Lorenzo, Jaime Alonso, Sjösund, Lars Lowe, Cevey, Sébastien, Gleicher, Zach, Avrahami, Thi, Boral, Anudhyan, Srinivasan, Hansa, Selo, Vittorio, May, Rhys, Aisopos, Konstantinos, Hussenot, Léonard, Soares, Livio Baldini, Baumli, Kate, Chang, Michael B., Recasens, Adrià, Caine, Ben, Pritzel, Alexander, Pavetic, Filip, Pardo, Fabio, Gergely, Anita, Frye, Justin, Ramasesh, Vinay, Horgan, Dan, Badola, Kartikeya, Kassner, Nora, Roy, Subhrajit, Dyer, Ethan, Campos, Víctor, Tomala, Alex, Tang, Yunhao, Badawy, Dalia El, White, Elspeth, Mustafa, Basil, Lang, Oran, Jindal, Abhishek, Vikram, Sharad, Gong, Zhitao, Caelles, Sergi, Hemsley, Ross, Thornton, Gregory, Feng, Fangxiaoyu, Stokowiec, Wojciech, Zheng, Ce, Thacker, Phoebe, Ünlü, Çağlar, Zhang, Zhishuai, Saleh, Mohammad, Svensson, James, Bileschi, Max, Patil, Piyush, Anand, Ankesh, Ring, Roman, Tsihlas, Katerina, Vezer, Arpi, Selvi, Marco, Shevlane, Toby, Rodriguez, Mikel, Kwiatkowski, Tom, Daruki, Samira, Rong, Keran, Dafoe, Allan, FitzGerald, Nicholas, Gu-Lemberg, Keren, Khan, Mina, Hendricks, Lisa Anne, Pellat, Marie, Feinberg, Vladimir, Cobon-Kerr, James, Sainath, Tara, Rauh, Maribeth, Hashemi, Sayed Hadi, Ives, Richard, Hasson, Yana, Li, YaGuang, Noland, Eric, Cao, Yuan, Byrd, Nathan, Hou, Le, Wang, Qingze, Sottiaux, Thibault, Paganini, Michela, Lespiau, Jean-Baptiste, Moufarek, Alexandre, Hassan, Samer, Shivakumar, Kaushik, van Amersfoort, Joost, Mandhane, Amol, Joshi, Pratik, Goyal, Anirudh, Tung, Matthew, Brock, Andrew, Sheahan, Hannah, Misra, Vedant, Li, Cheng, Rakićević, Nemanja, Dehghani, Mostafa, Liu, Fangyu, Mittal, Sid, Oh, Junhyuk, Noury, Seb, Sezener, Eren, Huot, Fantine, Lamm, Matthew, De Cao, Nicola, Chen, Charlie, Elsayed, Gamaleldin, Chi, Ed, Mahdieh, Mahdis, Tenney, Ian, Hua, Nan, Petrychenko, Ivan, Kane, Patrick, Scandinaro, Dylan, Jain, Rishub, Uesato, Jonathan, Datta, Romina, Sadovsky, Adam, Bunyan, Oskar, Rabiej, Dominik, Wu, Shimu, Zhang, John, Vasudevan, Gautam, Leurent, Edouard, Alnahlawi, Mahmoud, Georgescu, Ionut, Wei, Nan, Zheng, Ivy, Chan, Betty, Rabinovitch, Pam G, Stanczyk, Piotr, Zhang, Ye, Steiner, David, Naskar, Subhajit, Azzam, Michael, Johnson, Matthew, Paszke, Adam, Chiu, Chung-Cheng, Elias, Jaume Sanchez, Mohiuddin, Afroz, Muhammad, Faizan, Miao, Jin, Lee, Andrew, Vieillard, Nino, Potluri, Sahitya, Park, Jane, Davoodi, Elnaz, Zhang, Jiageng, Stanway, Jeff, Garmon, Drew, Karmarkar, Abhijit, Dong, Zhe, Lee, Jong, Kumar, Aviral, Zhou, Luowei, Evens, Jonathan, Isaac, William, Chen, Zhe, Jia, Johnson, Levskaya, Anselm, Zhu, Zhenkai, Gorgolewski, Chris, Grabowski, Peter, Mao, Yu, Magni, Alberto, Yao, Kaisheng, Snaider, Javier, Casagrande, Norman, Suganthan, Paul, Palmer, Evan, Irving, Geoffrey, Loper, Edward, Faruqui, Manaal, Arkatkar, Isha, Chen, Nanxin, Shafran, Izhak, Fink, Michael, Castaño, Alfonso, Giannoumis, Irene, Kim, Wooyeol, Rybiński, Mikołaj, Sreevatsa, Ashwin, Prendki, Jennifer, Soergel, David, Goedeckemeyer, Adrian, Gierke, Willi, Jafari, Mohsen, Gaba, Meenu, Wiesner, Jeremy, Wright, Diana Gage, Wei, Yawen, Vashisht, Harsha, Kulizhskaya, Yana, Hoover, Jay, Le, Maigo, Li, Lu, Iwuanyanwu, Chimezie, Liu, Lu, Ramirez, Kevin, Khorlin, Andrey, Cui, Albert, LIN, Tian, Georgiev, Marin, Wu, Marcus, Aguilar, Ricardo, Pallo, Keith, Chakladar, Abhishek, Repina, Alena, Wu, Xihui, van der Weide, Tom, Ponnapalli, Priya, Kaplan, Caroline, Simsa, Jiri, Li, Shuangfeng, Dousse, Olivier, Yang, Fan, Piper, Jeff, Ie, Nathan, Lui, Minnie, Pasumarthi, Rama, Lintz, Nathan, Vijayakumar, Anitha, Thiet, Lam Nguyen, Andor, Daniel, Valenzuela, Pedro, Paduraru, Cosmin, Peng, Daiyi, Lee, Katherine, Zhang, Shuyuan, Greene, Somer, Nguyen, Duc Dung, Kurylowicz, Paula, Velury, Sarmishta, Krause, Sebastian, Hardin, Cassidy, Dixon, Lucas, Janzer, Lili, Choo, Kiam, Feng, Ziqiang, Zhang, Biao, Singhal, Achintya, Latkar, Tejasi, Zhang, Mingyang, Le, Quoc, Abellan, Elena Allica, Du, Dayou, McKinnon, Dan, Antropova, Natasha, Bolukbasi, Tolga, Keller, Orgad, Reid, David, Finchelstein, Daniel, Raad, Maria Abi, Crocker, Remi, Hawkins, Peter, Dadashi, Robert, Gaffney, Colin, Lall, Sid, Franko, Ken, Filonov, Egor, Bulanova, Anna, Leblond, Rémi, Yadav, Vikas, Chung, Shirley, Askham, Harry, Cobo, Luis C., Xu, Kelvin, Fischer, Felix, Xu, Jun, Sorokin, Christina, Alberti, Chris, Lin, Chu-Cheng, Evans, Colin, Zhou, Hao, Dimitriev, Alek, Forbes, Hannah, Banarse, Dylan, Tung, Zora, Liu, Jeremiah, Omernick, Mark, Bishop, Colton, Kumar, Chintu, Sterneck, Rachel, Foley, Ryan, Jain, Rohan, Mishra, Swaroop, Xia, Jiawei, Bos, Taylor, Cideron, Geoffrey, Amid, Ehsan, Piccinno, Francesco, Wang, Xingyu, Banzal, Praseem, Gurita, Petru, Noga, Hila, Shah, Premal, Mankowitz, Daniel J., Polozov, Alex, Kushman, Nate, Krakovna, Victoria, Brown, Sasha, Bateni, MohammadHossein, Duan, Dennis, Firoiu, Vlad, Thotakuri, Meghana, Natan, Tom, Mohananey, Anhad, Geist, Matthieu, Mudgal, Sidharth, Girgin, Sertan, Li, Hui, Ye, Jiayu, Roval, Ofir, Tojo, Reiko, Kwong, Michael, Lee-Thorp, James, Yew, Christopher, Yuan, Quan, Bagri, Sumit, Sinopalnikov, Danila, Ramos, Sabela, Mellor, John, Sharma, Abhishek, Severyn, Aliaksei, Lai, Jonathan, Wu, Kathy, Cheng, Heng-Tze, Miller, David, Sonnerat, Nicolas, Vnukov, Denis, Greig, Rory, Beattie, Jennifer, Caveness, Emily, Bai, Libin, Eisenschlos, Julian, Korchemniy, Alex, Tsai, Tomy, Jasarevic, Mimi, Kong, Weize, Dao, Phuong, Zheng, Zeyu, Liu, Frederick, Yang, Fan, Zhu, Rui, Geller, Mark, Teh, Tian Huey, Sanmiya, Jason, Gladchenko, Evgeny, Trdin, Nejc, Sozanschi, Andrei, Toyama, Daniel, Rosen, Evan, Tavakkol, Sasan, Xue, Linting, Elkind, Chen, Woodman, Oliver, Carpenter, John, Papamakarios, George, Kemp, Rupert, Kafle, Sushant, Grunina, Tanya, Sinha, Rishika, Talbert, Alice, Goyal, Abhimanyu, Wu, Diane, Owusu-Afriyie, Denese, Du, Cosmo, Thornton, Chloe, Pont-Tuset, Jordi, Narayana, Pradyumna, Li, Jing, Fatehi, Sabaer, Wieting, John, Ajmeri, Omar, Uria, Benigno, Zhu, Tao, Ko, Yeongil, Knight, Laura, Héliou, Amélie, Niu, Ning, Gu, Shane, Pang, Chenxi, Tran, Dustin, Li, Yeqing, Levine, Nir, Stolovich, Ariel, Kalb, Norbert, Santamaria-Fernandez, Rebeca, Goenka, Sonam, Yustalim, Wenny, Strudel, Robin, Elqursh, Ali, Lakshminarayanan, Balaji, Deck, Charlie, Upadhyay, Shyam, Lee, Hyo, Dusenberry, Mike, Li, Zonglin, Wang, Xuezhi, Levin, Kyle, Hoffmann, Raphael, Holtmann-Rice, Dan, Bachem, Olivier, Yue, Summer, Arora, Sho, Malmi, Eric, Mirylenka, Daniil, Tan, Qijun, Koh, Christy, Yeganeh, Soheil Hassas, Põder, Siim, Zheng, Steven, Pongetti, Francesco, Tariq, Mukarram, Sun, Yanhua, Ionita, Lucian, Seyedhosseini, Mojtaba, Tafti, Pouya, Kotikalapudi, Ragha, Liu, Zhiyu, Gulati, Anmol, Liu, Jasmine, Ye, Xinyu, Chrzaszcz, Bart, Wang, Lily, Sethi, Nikhil, Li, Tianrun, Brown, Ben, Singh, Shreya, Fan, Wei, Parisi, Aaron, Stanton, Joe, Kuang, Chenkai, Koverkathu, Vinod, Choquette-Choo, Christopher A., Li, Yunjie, Lu, TJ, Ittycheriah, Abe, Shroff, Prakash, Sun, Pei, Varadarajan, Mani, Bahargam, Sanaz, Willoughby, Rob, Gaddy, David, Dasgupta, Ishita, Desjardins, Guillaume, Cornero, Marco, Robenek, Brona, Mittal, Bhavishya, Albrecht, Ben, Shenoy, Ashish, Moiseev, Fedor, Jacobsson, Henrik, Ghaffarkhah, Alireza, Rivière, Morgane, Walton, Alanna, Crepy, Clément, Parrish, Alicia, Liu, Yuan, Zhou, Zongwei, Farabet, Clement, Radebaugh, Carey, Srinivasan, Praveen, van der Salm, Claudia, Fidjeland, Andreas, Scellato, Salvatore, Latorre-Chimoto, Eri, Klimczak-Plucińska, Hanna, Bridson, David, de Cesare, Dario, Hudson, Tom, Mendolicchio, Piermaria, Walker, Lexi, Morris, Alex, Penchev, Ivo, Mauger, Matthew, Guseynov, Alexey, Reid, Alison, Odoom, Seth, Loher, Lucia, Cotruta, Victor, Yenugula, Madhavi, Grewe, Dominik, Petrushkina, Anastasia, Duerig, Tom, Sanchez, Antonio, Yadlowsky, Steve, Shen, Amy, Globerson, Amir, Kurzrok, Adam, Webb, Lynette, Dua, Sahil, Li, Dong, Lahoti, Preethi, Bhupatiraju, Surya, Hurt, Dan, Qureshi, Haroon, Agarwal, Ananth, Shani, Tomer, Eyal, Matan, Khare, Anuj, Belle, Shreyas Rammohan, Wang, Lei, Tekur, Chetan, Kale, Mihir Sanjay, Wei, Jinliang, Sang, Ruoxin, Saeta, Brennan, Liechty, Tyler, Sun, Yi, Zhao, Yao, Lee, Stephan, Nayak, Pandu, Fritz, Doug, Vuyyuru, Manish Reddy, Aslanides, John, Vyas, Nidhi, Wicke, Martin, Ma, Xiao, Bilal, Taylan, Eltyshev, Evgenii, Balle, Daniel, Martin, Nina, Cate, Hardie, Manyika, James, Amiri, Keyvan, Kim, Yelin, Xiong, Xi, Kang, Kai, Luisier, Florian, Tripuraneni, Nilesh, Madras, David, Guo, Mandy, Waters, Austin, Wang, Oliver, Ainslie, Joshua, Baldridge, Jason, Zhang, Han, Pruthi, Garima, Bauer, Jakob, Yang, Feng, Mansour, Riham, Gelman, Jason, Xu, Yang, Polovets, George, Liu, Ji, Cai, Honglong, Chen, Warren, Sheng, XiangHai, Xue, Emily, Ozair, Sherjil, Yu, Adams, Angermueller, Christof, Li, Xiaowei, Wang, Weiren, Wiesinger, Julia, Koukoumidis, Emmanouil, Tian, Yuan, Iyer, Anand, Gurumurthy, Madhu, Goldenson, Mark, Shah, Parashar, Blake, MK, Yu, Hongkun, Urbanowicz, Anthony, Palomaki, Jennimaria, Fernando, Chrisantha, Brooks, Kevin, Durden, Ken, Mehta, Harsh, Momchev, Nikola, Rahimtoroghi, Elahe, Georgaki, Maria, Raul, Amit, Ruder, Sebastian, Redshaw, Morgan, Lee, Jinhyuk, Jalan, Komal, Li, Dinghua, Perng, Ginger, Hechtman, Blake, Schuh, Parker, Nasr, Milad, Chen, Mia, Milan, Kieran, Mikulik, Vladimir, Strohman, Trevor, Franco, Juliana, Green, Tim, Hassabis, Demis, Kavukcuoglu, Koray, Dean, Jeffrey, Vinyals, Oriol
This report introduces a new family of multimodal models, Gemini, that exhibit remarkable capabilities across image, audio, video, and text understanding. The Gemini family consists of Ultra, Pro, and Nano sizes, suitable for applications ranging from complex reasoning tasks to on-device memory-constrained use-cases. Evaluation on a broad range of benchmarks shows that our most-capable Gemini Ultra model advances the state of the art in 30 of 32 of these benchmarks - notably being the first model to achieve human-expert performance on the well-studied exam benchmark MMLU, and improving the state of the art in every one of the 20 multimodal benchmarks we examined. We believe that the new capabilities of Gemini models in cross-modal reasoning and language understanding will enable a wide variety of use cases and we discuss our approach toward deploying them responsibly to users.