Plotting

 Kumar, Arun


Bipedal Walking Robot using Deep Deterministic Policy Gradient

arXiv.org Artificial Intelligence

Machine learning algorithms have found several applications in the field of robotics and control systems. The control systems community has started to show interest towards several machine learning algorithms from the sub-domains such as supervised learning, imitation learning and reinforcement learning to achieve autonomous control and intelligent decision making. Amongst many complex control problems, stable bipedal walking has been the most challenging problem. In this paper, we present an architecture to design and simulate a planar bipedal walking robot(BWR) using a realistic robotics simulator, Gazebo. The robot demonstrates successful walking behaviour by learning through several of its trial and errors, without any prior knowledge of itself or the world dynamics. The autonomous walking of the BWR is achieved using reinforcement learning algorithm called Deep Deterministic Policy Gradient(DDPG). DDPG is one of the algorithms for learning controls in continuous action spaces. After training the model in simulation, it was observed that, with a proper shaped reward function, the robot achieved faster walking or even rendered a running gait with an average speed of 0.83 m/s. The gait pattern of the bipedal walker was compared with the actual human walking pattern. The results show that the bipedal walking pattern had similar characteristics to that of a human walking pattern. The video presenting our experiment is available at https://goo.gl/NHXKqR.


Model-based Pricing for Machine Learning in a Data Marketplace

arXiv.org Machine Learning

Data analytics using machine learning (ML) has become ubiquitous in science, business intelligence, journalism and many other domains. While a lot of work focuses on reducing the training cost, inference runtime and storage cost of ML models, little work studies how to reduce the cost of data acquisition, which potentially leads to a loss of sellers' revenue and buyers' affordability and efficiency. In this paper, we propose a model-based pricing (MBP) framework, which instead of pricing the data, directly prices ML model instances. We first formally describe the desired properties of the MBP framework, with a focus on avoiding arbitrage. Next, we show a concrete realization of the MBP framework via a noise injection approach, which provably satisfies the desired formal properties. Based on the proposed framework, we then provide algorithmic solutions on how the seller can assign prices to models under different market scenarios (such as to maximize revenue). Finally, we conduct extensive experiments, which validate that the MBP framework can provide high revenue to the seller, high affordability to the buyer, and also operate on low runtime cost.


Bolt-on Differential Privacy for Scalable Stochastic Gradient Descent-based Analytics

arXiv.org Machine Learning

While significant progress has been made separately on analytics systems for scalable stochastic gradient descent (SGD) and private SGD, none of the major scalable analytics frameworks have incorporated differentially private SGD. There are two inter-related issues for this disconnect between research and practice: (1) low model accuracy due to added noise to guarantee privacy, and (2) high development and runtime overhead of the private algorithms. This paper takes a first step to remedy this disconnect and proposes a private SGD algorithm to address \emph{both} issues in an integrated manner. In contrast to the white-box approach adopted by previous work, we revisit and use the classical technique of {\em output perturbation} to devise a novel "bolt-on" approach to private SGD. While our approach trivially addresses (2), it makes (1) even more challenging. We address this challenge by providing a novel analysis of the $L_2$-sensitivity of SGD, which allows, under the same privacy guarantees, better convergence of SGD when only a constant number of passes can be made over the data. We integrate our algorithm, as well as other state-of-the-art differentially private SGD, into Bismarck, a popular scalable SGD-based analytics system on top of an RDBMS. Extensive experiments show that our algorithm can be easily integrated, incurs virtually no overhead, scales well, and most importantly, yields substantially better (up to 4X) test accuracy than the state-of-the-art algorithms on many real datasets.


When Lempel-Ziv-Welch Meets Machine Learning: A Case Study of Accelerating Machine Learning using Coding

arXiv.org Machine Learning

In this paper we study the use of coding techniques to accelerate machine learning (ML). Coding techniques, such as prefix codes, have been extensively studied and used to accelerate low-level data processing primitives such as scans in a relational database system. However, there is little work on how to exploit them to accelerate ML algorithms. In fact, applying coding techniques for faster ML faces a unique challenge: one needs to consider both how the codes fit into the optimization algorithm used to train a model, and the interplay between the model structure and the coding scheme. Surprisingly and intriguingly, our study demonstrates that a slight variant of the classical Lempel-Ziv-Welch (LZW) coding scheme is a good fit for several popular ML algorithms, resulting in substantial runtime savings. Comprehensive experiments on several real-world datasets show that our LZW-based ML algorithms exhibit speedups of up to 31x compared to a popular and state-of-the-art ML library, with no changes to ML accuracy, even though the implementations of our LZW variants are not heavily tuned. Thus, our study reveals a new avenue for accelerating ML algorithms using coding techniques and we hope this opens up a new direction for more research.