Kumar, Anurag
TAPLoss: A Temporal Acoustic Parameter Loss for Speech Enhancement
Zeng, Yunyang, Konan, Joseph, Han, Shuo, Bick, David, Yang, Muqiao, Kumar, Anurag, Watanabe, Shinji, Raj, Bhiksha
Speech enhancement models have greatly progressed in recent years, but still show limits in perceptual quality of their speech outputs. We propose an objective for perceptual quality based on temporal acoustic parameters. These are fundamental speech features that play an essential role in various applications, including speaker recognition and paralinguistic analysis. We provide a differentiable estimator for four categories of low-level acoustic descriptors involving: frequency-related parameters, energy or amplitude-related parameters, spectral balance parameters, and temporal features. Unlike prior work that looks at aggregated acoustic parameters or a few categories of acoustic parameters, our temporal acoustic parameter (TAP) loss enables auxiliary optimization and improvement of many fine-grain speech characteristics in enhancement workflows. We show that adding TAPLoss as an auxiliary objective in speech enhancement produces speech with improved perceptual quality and intelligibility. We use data from the Deep Noise Suppression 2020 Challenge to demonstrate that both time-domain models and time-frequency domain models can benefit from our method.
Rethinking complex-valued deep neural networks for monaural speech enhancement
Wu, Haibin, Tan, Ke, Xu, Buye, Kumar, Anurag, Wong, Daniel
Despite multiple efforts made towards adopting complex-valued deep neural networks (DNNs), it remains an open question whether complex-valued DNNs are generally more effective than real-valued DNNs for monaural speech enhancement. This work is devoted to presenting a critical assessment by systematically examining complex-valued DNNs against their real-valued counterparts. Specifically, we investigate complex-valued DNN atomic units, including linear layers, convolutional layers, long short-term memory (LSTM), and gated linear units. By comparing complex- and real-valued versions of fundamental building blocks in the recently developed gated convolutional recurrent network (GCRN), we show how different mechanisms for basic blocks affect the performance. We also find that the use of complex-valued operations hinders the model capacity when the model size is small. In addition, we examine two recent complex-valued DNNs, i.e. deep complex convolutional recurrent network (DCCRN) and deep complex U-Net (DCUNET). Evaluation results show that both DNNs produce identical performance to their real-valued counterparts while requiring much more computation. Based on these comprehensive comparisons, we conclude that complex-valued DNNs do not provide a performance gain over their real-valued counterparts for monaural speech enhancement, and thus are less desirable due to their higher computational costs.
Continual self-training with bootstrapped remixing for speech enhancement
Tzinis, Efthymios, Adi, Yossi, Ithapu, Vamsi K., Xu, Buye, Kumar, Anurag
We propose RemixIT, a simple and novel self-supervised training method for speech enhancement. The proposed method is based on a continuously self-training scheme that overcomes limitations from previous studies including assumptions for the in-domain noise distribution and having access to clean target signals. Specifically, a separation teacher model is pre-trained on an out-of-domain dataset and is used to infer estimated target signals for a batch of in-domain mixtures. Next, we bootstrap the mixing process by generating artificial mixtures using permuted estimated clean and noise signals. Finally, the student model is trained using the permuted estimated sources as targets while we periodically update teacher's weights using the latest student model. Our experiments show that RemixIT outperforms several previous state-of-the-art self-supervised methods under multiple speech enhancement tasks. Additionally, RemixIT provides a seamless alternative for semi-supervised and unsupervised domain adaptation for speech enhancement tasks, while being general enough to be applied to any separation task and paired with any separation model.
Ego4D: Around the World in 3,000 Hours of Egocentric Video
Grauman, Kristen, Westbury, Andrew, Byrne, Eugene, Chavis, Zachary, Furnari, Antonino, Girdhar, Rohit, Hamburger, Jackson, Jiang, Hao, Liu, Miao, Liu, Xingyu, Martin, Miguel, Nagarajan, Tushar, Radosavovic, Ilija, Ramakrishnan, Santhosh Kumar, Ryan, Fiona, Sharma, Jayant, Wray, Michael, Xu, Mengmeng, Xu, Eric Zhongcong, Zhao, Chen, Bansal, Siddhant, Batra, Dhruv, Cartillier, Vincent, Crane, Sean, Do, Tien, Doulaty, Morrie, Erapalli, Akshay, Feichtenhofer, Christoph, Fragomeni, Adriano, Fu, Qichen, Fuegen, Christian, Gebreselasie, Abrham, Gonzalez, Cristina, Hillis, James, Huang, Xuhua, Huang, Yifei, Jia, Wenqi, Khoo, Weslie, Kolar, Jachym, Kottur, Satwik, Kumar, Anurag, Landini, Federico, Li, Chao, Li, Yanghao, Li, Zhenqiang, Mangalam, Karttikeya, Modhugu, Raghava, Munro, Jonathan, Murrell, Tullie, Nishiyasu, Takumi, Price, Will, Puentes, Paola Ruiz, Ramazanova, Merey, Sari, Leda, Somasundaram, Kiran, Southerland, Audrey, Sugano, Yusuke, Tao, Ruijie, Vo, Minh, Wang, Yuchen, Wu, Xindi, Yagi, Takuma, Zhu, Yunyi, Arbelaez, Pablo, Crandall, David, Damen, Dima, Farinella, Giovanni Maria, Ghanem, Bernard, Ithapu, Vamsi Krishna, Jawahar, C. V., Joo, Hanbyul, Kitani, Kris, Li, Haizhou, Newcombe, Richard, Oliva, Aude, Park, Hyun Soo, Rehg, James M., Sato, Yoichi, Shi, Jianbo, Shou, Mike Zheng, Torralba, Antonio, Torresani, Lorenzo, Yan, Mingfei, Malik, Jitendra
We introduce Ego4D, a massive-scale egocentric video dataset and benchmark suite. It offers 3,025 hours of daily-life activity video spanning hundreds of scenarios (household, outdoor, workplace, leisure, etc.) captured by 855 unique camera wearers from 74 worldwide locations and 9 different countries. The approach to collection is designed to uphold rigorous privacy and ethics standards with consenting participants and robust de-identification procedures where relevant. Ego4D dramatically expands the volume of diverse egocentric video footage publicly available to the research community. Portions of the video are accompanied by audio, 3D meshes of the environment, eye gaze, stereo, and/or synchronized videos from multiple egocentric cameras at the same event. Furthermore, we present a host of new benchmark challenges centered around understanding the first-person visual experience in the past (querying an episodic memory), present (analyzing hand-object manipulation, audio-visual conversation, and social interactions), and future (forecasting activities). By publicly sharing this massive annotated dataset and benchmark suite, we aim to push the frontier of first-person perception. Project page: https://ego4d-data.org/
Online Self-Attentive Gated RNNs for Real-Time Speaker Separation
Kabeli, Ori, Adi, Yossi, Tang, Zhenyu, Xu, Buye, Kumar, Anurag
Deep neural networks have recently shown great success in the task of blind source separation, both under monaural and binaural settings. Although these methods were shown to produce high-quality separations, they were mainly applied under offline settings, in which the model has access to the full input signal while separating the signal. In this study, we convert a non-causal state-of-the-art separation model into a causal and real-time model and evaluate its performance under both online and offline settings. We compare the performance of the proposed model to several baseline methods under anechoic, noisy, and noisy-reverberant recording conditions while exploring both monaural and binaural inputs and outputs. Our findings shed light on the relative difference between causal and non-causal models when performing separation. Our stateful implementation for online separation leads to a minor drop in performance compared to the offline model; 0.8dB for monaural inputs and 0.3dB for binaural inputs while reaching a real-time factor of 0.65. Samples can be found under the following link: https://kwanum.github.io/sagrnnc-stream-results/.
Do sound event representations generalize to other audio tasks? A case study in audio transfer learning
Kumar, Anurag, Wang, Yun, Ithapu, Vamsi Krishna, Fuegen, Christian
Transfer learning is critical for efficient information transfer across multiple related learning problems. A simple, yet effective transfer learning approach utilizes deep neural networks trained on a large-scale task for feature extraction. Such representations are then used to learn related downstream tasks. In this paper, we investigate transfer learning capacity of audio representations obtained from neural networks trained on a large-scale sound event detection dataset. We build and evaluate these representations across a wide range of other audio tasks, via a simple linear classifier transfer mechanism. We show that such simple linear transfer is already powerful enough to achieve high performance on the downstream tasks. We also provide insights into the attributes of sound event representations that enable such efficient information transfer.
Large Scale Audiovisual Learning of Sounds with Weakly Labeled Data
Fayek, Haytham M., Kumar, Anurag
Recognizing sounds is a key aspect of computational audio scene analysis and machine perception. In this paper, we advocate that sound recognition is inherently a multi-modal audiovisual task in that it is easier to differentiate sounds using both the audio and visual modalities as opposed to one or the other. We present an audiovisual fusion model that learns to recognize sounds from weakly labeled video recordings. The proposed fusion model utilizes an attention mechanism to dynamically combine the outputs of the individual audio and visual models. Experiments on the large scale sound events dataset, AudioSet, demonstrate the efficacy of the proposed model, which outperforms the single-modal models, and state-of-the-art fusion and multi-modal models. We achieve a mean Average Precision (mAP) of 46.16 on Audioset, outperforming prior state of the art by approximately +4.35 mAP (relative: 10.4%).
Classifier Risk Estimation under Limited Labeling Resources
Kumar, Anurag, Raj, Bhiksha
In this paper we propose strategies for estimating performance of a classifier when labels cannot be obtained for the whole test set. The number of test instances which can be labeled is very small compared to the whole test data size. The goal then is to obtain a precise estimate of classifier performance using as little labeling resource as possible. Specifically, we try to answer, how to select a subset of the large test set for labeling such that the performance of a classifier estimated on this subset is as close as possible to the one on the whole test set. We propose strategies based on stratified sampling for selecting this subset. We show that these strategies can reduce the variance in estimation of classifier accuracy by a significant amount compared to simple random sampling (over 65% in several cases). Hence, our proposed methods are much more precise compared to random sampling for accuracy estimation under restricted labeling resources. The reduction in number of samples required (compared to random sampling) to estimate the classifier accuracy with only 1% error is high as 60% in some cases.
Discovering Sound Concepts and Acoustic Relations In Text
Kumar, Anurag, Raj, Bhiksha, Nakashole, Ndapandula
In this paper we describe approaches for discovering acoustic concepts and relations in text. The first major goal is to be able to identify text phrases which contain a notion of audibility and can be termed as a sound or an acoustic concept. We also propose a method to define an acoustic scene through a set of sound concepts. We use pattern matching and parts of speech tags to generate sound concepts from large scale text corpora. We use dependency parsing and LSTM recurrent neural network to predict a set of sound concepts for a given acoustic scene. These methods are not only helpful in creating an acoustic knowledge base but in the future can also directly help acoustic event and scene detection research.