Plotting

 Kumar, Amandeep


AgroGPT: Efficient Agricultural Vision-Language Model with Expert Tuning

arXiv.org Artificial Intelligence

Significant progress has been made in advancing large multimodal conversational models (LMMs), capitalizing on vast repositories of image-text data available online. Despite this progress, these models often encounter substantial domain gaps, hindering their ability to engage in complex conversations across new domains. Recent efforts have aimed to mitigate this issue, albeit relying on domain-specific image-text data to curate instruction-tuning data. However, many domains, such as agriculture, lack such vision-language data. In this work, we propose an approach to construct instruction-tuning data that harnesses vision-only data for the agriculture domain. We utilize diverse agricultural datasets spanning multiple domains, curate class-specific information, and employ large language models (LLMs) to construct an expert-tuning set, resulting in a 70k expert-tuning dataset called AgroInstruct. Subsequently, we expert-tuned and created AgroGPT, an efficient LMM that can hold complex agriculture-related conversations and provide useful insights. We also develop AgroEvals for evaluation and compare {AgroGPT's} performance with large open and closed-source models. {AgroGPT} excels at identifying fine-grained agricultural concepts, can act as an agriculture expert, and provides helpful information for multimodal agriculture questions. The code, datasets, and models are available at https://github.com/awaisrauf/agroGPT.


All Languages Matter: Evaluating LMMs on Culturally Diverse 100 Languages

arXiv.org Artificial Intelligence

Existing Large Multimodal Models (LMMs) generally focus on only a few regions and languages. As LMMs continue to improve, it is increasingly important to ensure they understand cultural contexts, respect local sensitivities, and support low-resource languages, all while effectively integrating corresponding visual cues. In pursuit of culturally diverse global multimodal models, our proposed All Languages Matter Benchmark (ALM-bench) represents the largest and most comprehensive effort to date for evaluating LMMs across 100 languages. ALM-bench challenges existing models by testing their ability to understand and reason about culturally diverse images paired with text in various languages, including many low-resource languages traditionally underrepresented in LMM research. The benchmark offers a robust and nuanced evaluation framework featuring various question formats, including true/false, multiple choice, and open-ended questions, which are further divided into short and long-answer categories. ALM-bench design ensures a comprehensive assessment of a model's ability to handle varied levels of difficulty in visual and linguistic reasoning. To capture the rich tapestry of global cultures, ALM-bench carefully curates content from 13 distinct cultural aspects, ranging from traditions and rituals to famous personalities and celebrations. Through this, ALM-bench not only provides a rigorous testing ground for state-of-the-art open and closed-source LMMs but also highlights the importance of cultural and linguistic inclusivity, encouraging the development of models that can serve diverse global populations effectively. Our benchmark is publicly available.


Efficient 3D-Aware Facial Image Editing via Attribute-Specific Prompt Learning

arXiv.org Artificial Intelligence

Drawing upon StyleGAN's expressivity and disentangled latent space, existing 2D approaches employ textual prompting to edit facial images with different attributes. In contrast, 3D-aware approaches that generate faces at different target poses require attribute-specific classifiers, learning separate model weights for each attribute, and are not scalable for novel attributes. In this work, we propose an efficient, plug-and-play, 3D-aware face editing framework based on attribute-specific prompt learning, enabling the generation of facial images with controllable attributes across various target poses. To this end, we introduce a text-driven learnable style token-based latent attribute editor (LAE). The LAE harnesses a pre-trained vision-language model to find text-guided attribute-specific editing direction in the latent space of any pre-trained 3D-aware GAN. It utilizes learnable style tokens and style mappers to learn and transform this editing direction to 3D latent space. To train LAE with multiple attributes, we use directional contrastive loss and style token loss. Furthermore, to ensure view consistency and identity preservation across different poses and attributes, we employ several 3D-aware identity and pose preservation losses. Our experiments show that our proposed framework generates high-quality images with 3D awareness and view consistency while maintaining attribute-specific features. We demonstrate the effectiveness of our method on different facial attributes, including hair color and style, expression, and others. Code: https://github.com/VIROBO-15/Efficient-3D-Aware-Facial-Image-Editing.