Goto

Collaborating Authors

 Kumar, Abhishek


Fast Conical Hull Algorithms for Near-separable Non-negative Matrix Factorization

arXiv.org Machine Learning

The separability assumption (Donoho & Stodden, 2003; Arora et al., 2012) turns non-negative matrix factorization (NMF) into a tractable problem. Recently, a new class of provably-correct NMF algorithms have emerged under this assumption. In this paper, we reformulate the separable NMF problem as that of finding the extreme rays of the conical hull of a finite set of vectors. From this geometric perspective, we derive new separable NMF algorithms that are highly scalable and empirically noise robust, and have several other favorable properties in relation to existing methods. A parallel implementation of our algorithm demonstrates high scalability on shared- and distributed-memory machines.


Learning Task Grouping and Overlap in Multi-task Learning

arXiv.org Machine Learning

In the paradigm of multi-task learning, mul- tiple related prediction tasks are learned jointly, sharing information across the tasks. We propose a framework for multi-task learn- ing that enables one to selectively share the information across the tasks. We assume that each task parameter vector is a linear combi- nation of a finite number of underlying basis tasks. The coefficients of the linear combina- tion are sparse in nature and the overlap in the sparsity patterns of two tasks controls the amount of sharing across these. Our model is based on on the assumption that task pa- rameters within a group lie in a low dimen- sional subspace but allows the tasks in differ- ent groups to overlap with each other in one or more bases. Experimental results on four datasets show that our approach outperforms competing methods.


A Binary Classification Framework for Two-Stage Multiple Kernel Learning

arXiv.org Machine Learning

With the advent of kernel methods, automating the task of specifying a suitable kernel has become increasingly important. In this context, the Multiple Kernel Learning (MKL) problem of finding a combination of pre-specified base kernels that is suitable for the task at hand has received significant attention from researchers. In this paper we show that Multiple Kernel Learning can be framed as a standard binary classification problem with additional constraints that ensure the positive definiteness of the learned kernel. Framing MKL in this way has the distinct advantage that it makes it easy to leverage the extensive research in binary classification to develop better performing and more scalable MKL algorithms that are conceptually simpler, and, arguably, more accessible to practitioners. Experiments on nine data sets from different domains show that, despite its simplicity, the proposed technique compares favorably with current leading MKL approaches.


Co-regularized Multi-view Spectral Clustering

Neural Information Processing Systems

In many clustering problems, we have access to multiple views of the data each of which could be individually used for clustering. Exploiting information from multiple views, one can hope to find a clustering that is more accurate than the ones obtained using the individual views. Since the true clustering would assign a point to the same cluster irrespective of the view, we can approach this problem by looking for clusterings that are consistent across the views, i.e., corresponding data points in each view should have same cluster membership. We propose a spectral clustering framework that achieves this goal by co-regularizing the clustering hypotheses, and propose two co-regularization schemes to accomplish this. Experimental comparisons with a number of baselines on two synthetic and three real-world datasets establish the efficacy of our proposed approaches.


Co-regularization Based Semi-supervised Domain Adaptation

Neural Information Processing Systems

This paper presents a co-regularization based approach to semi-supervised domain adaptation. Our proposed approach (EA++) builds on the notion of augmented space (introduced in EASYADAPT (EA) [1]) and harnesses unlabeled data in target domain to further enable the transfer of information from source to target. This semi-supervised approach to domain adaptation is extremely simple to implement and can be applied as a pre-processing step to any supervised learner. Our theoretical analysis (in terms of Rademacher complexity) of EA and EA++ show that the hypothesis class of EA++ has lower complexity (compared to EA) and hence results in tighter generalization bounds. Experimental results on sentiment analysis tasks reinforce our theoretical findings and demonstrate the efficacy of the proposed method when compared to EA as well as a few other baseline approaches.


Sentiment Extraction: Integrating Statistical Parsing, Semantic Analysis, and Common Sense Reasoning

AAAI Conferences

Much of the ongoing explosion of digital content is in the form of text. This content is a virtual gold-mine of information that can inform a range of social, governmental, and business decisions. For example, using content available on blogs and social networking sites businesses can find out what its customers are saying about their products and services. In the digital age where customer is king, the business value of ascertaining consumer sentiment cannot be overstated. People express sentiments in myriad ways. At times, they use simple, direct assertions, but most often they use sentences involving comparisons, conjunctions expressing multiple and possibly opposing sentiments about multiple features and entities,and pronominal references whose resolution requires discourse level context. Frequently people use abbreviations, slang, SMSese, idioms and metaphors. Understanding the latter also requires common sense reasoning. In this paper, we present iSEE, a fully implemented sentiment extraction engine, which makes use of statistical methods, classical NLU techniques, common sense reasoning, and probabilistic inference to extract entity and feature specific sentiment from complex sentences and dialog. Most of the components of iSEE are domain independent and the system can be generalized to new domains by simply adding domain relevant lexicons.