Krueger, David
Integrating uncertainty quantification into randomized smoothing based robustness guarantees
Däubener, Sina, Maag, Kira, Krueger, David, Fischer, Asja
Deep neural networks have proven to be extremely powerful, however, they are also vulnerable to adversarial attacks which can cause hazardous incorrect predictions in safety-critical applications. Certified robustness via randomized smoothing gives a probabilistic guarantee that the smoothed classifier's predictions will not change within an $\ell_2$-ball around a given input. On the other hand (uncertainty) score-based rejection is a technique often applied in practice to defend models against adversarial attacks. In this work, we fuse these two approaches by integrating a classifier that abstains from predicting when uncertainty is high into the certified robustness framework. This allows us to derive two novel robustness guarantees for uncertainty aware classifiers, namely (i) the radius of an $\ell_2$-ball around the input in which the same label is predicted and uncertainty remains low and (ii) the $\ell_2$-radius of a ball in which the predictions will either not change or be uncertain. While the former provides robustness guarantees with respect to attacks aiming at increased uncertainty, the latter informs about the amount of input perturbation necessary to lead the uncertainty aware model into a wrong prediction. Notably, this is on CIFAR10 up to 20.93% larger than for models not allowing for uncertainty based rejection. We demonstrate, that the novel framework allows for a systematic robustness evaluation of different network architectures and uncertainty measures and to identify desired properties of uncertainty quantification techniques. Moreover, we show that leveraging uncertainty in a smoothed classifier helps out-of-distribution detection.
Towards Reliable Evaluation of Behavior Steering Interventions in LLMs
Pres, Itamar, Ruis, Laura, Lubana, Ekdeep Singh, Krueger, David
Representation engineering methods have recently shown promise for enabling efficient steering of model behavior. However, evaluation pipelines for these methods have primarily relied on subjective demonstrations, instead of quantitative, objective metrics. We aim to take a step towards addressing this issue by advocating for four properties missing from current evaluations: (i) contexts sufficiently similar to downstream tasks should be used for assessing intervention quality; (ii) model likelihoods should be accounted for; (iii) evaluations should allow for standardized comparisons across different target behaviors; and (iv) baseline comparisons should be offered. We introduce an evaluation pipeline grounded in these criteria, offering both a quantitative and visual analysis of how effectively a given method works. We use this pipeline to evaluate two representation engineering methods on how effectively they can steer behaviors such as truthfulness and corrigibility, finding that some interventions are less effective than previously reported.
PoisonBench: Assessing Large Language Model Vulnerability to Data Poisoning
Fu, Tingchen, Sharma, Mrinank, Torr, Philip, Cohen, Shay B., Krueger, David, Barez, Fazl
Preference learning is a central component for aligning current LLMs, but this process can be vulnerable to data poisoning attacks. To address this concern, we introduce PoisonBench, a benchmark for evaluating large language models' susceptibility to data poisoning during preference learning. Data poisoning attacks can manipulate large language model responses to include hidden malicious content or biases, potentially causing the model to generate harmful or unintended outputs while appearing to function normally. We deploy two distinct attack types across eight realistic scenarios, assessing 21 widely-used models. Our findings reveal concerning trends: (1) Scaling up parameter size does not inherently enhance resilience against poisoning attacks; (2) There exists a log-linear relationship between the effects of the attack and the data poison ratio; (3) The effect of data poisoning can generalize to extrapolated triggers that are not included in the poisoned data. These results expose weaknesses in current preference learning techniques, highlighting the urgent need for more robust defenses against malicious models and data manipulation.
Sparse Autoencoders Reveal Universal Feature Spaces Across Large Language Models
Lan, Michael, Torr, Philip, Meek, Austin, Khakzar, Ashkan, Krueger, David, Barez, Fazl
We investigate feature universality in large language models (LLMs), a research field that aims to understand how different models similarly represent concepts in the latent spaces of their intermediate layers. Demonstrating feature universality allows discoveries about latent representations to generalize across several models. However, comparing features across LLMs is challenging due to polysemanticity, in which individual neurons often correspond to multiple features rather than distinct ones. This makes it difficult to disentangle and match features across different models. To address this issue, we employ a method known as dictionary learning by using sparse autoencoders (SAEs) to transform LLM activations into more interpretable spaces spanned by neurons corresponding to individual features. After matching feature neurons across models via activation correlation, we apply representational space similarity metrics like Singular Value Canonical Correlation Analysis to analyze these SAE features across different LLMs. Our experiments reveal significant similarities in SAE feature spaces across various LLMs, providing new evidence for feature universality.
Exploring the design space of deep-learning-based weather forecasting systems
Siddiqui, Shoaib Ahmed, Kossaifi, Jean, Bonev, Boris, Choy, Christopher, Kautz, Jan, Krueger, David, Azizzadenesheli, Kamyar
Despite tremendous progress in developing deep-learning-based weather forecasting systems, their design space, including the impact of different design choices, is yet to be well understood. This paper aims to fill this knowledge gap by systematically analyzing these choices including architecture, problem formulation, pretraining scheme, use of image-based pretrained models, loss functions, noise injection, multi-step inputs, additional static masks, multi-step finetuning (including larger stride models), as well as training on a larger dataset. We study fixed-grid architectures such as UNet, fully convolutional architectures, and transformer-based models, along with grid-invariant architectures, including graph-based and operator-based models. Our results show that fixed-grid architectures outperform grid-invariant architectures, indicating a need for further architectural developments in grid-invariant models such as neural operators. We therefore propose a hybrid system that combines the strong performance of fixed-grid models with the flexibility of grid-invariant architectures. We further show that multi-step fine-tuning is essential for most deep-learning models to work well in practice, which has been a common practice in the past. Pretraining objectives degrade performance in comparison to supervised training, while image-based pretrained models provide useful inductive biases in some cases in comparison to training the model from scratch. Interestingly, we see a strong positive effect of using a larger dataset when training a smaller model as compared to training on a smaller dataset for longer. Larger models, on the other hand, primarily benefit from just an increase in the computational budget. We believe that these results will aid in the design of better weather forecasting systems in the future.
Towards Interpreting Visual Information Processing in Vision-Language Models
Neo, Clement, Ong, Luke, Torr, Philip, Geva, Mor, Krueger, David, Barez, Fazl
Vision-Language Models (VLMs) are powerful tools for processing and understanding text and images. We study the processing of visual tokens in the language model component of LLaVA, a prominent VLM. Our approach focuses on analyzing the localization of object information, the evolution of visual token representations across layers, and the mechanism of integrating visual information for predictions. Through ablation studies, we demonstrated that object identification accuracy drops by over 70% when object-specific tokens are removed. We observed that visual token representations become increasingly interpretable in the vocabulary space across layers, suggesting an alignment with textual tokens corresponding to image content. Finally, we found that the model extracts object information from these refined representations at the last token position for prediction, mirroring the process in text-only language models for factual association tasks. These findings provide crucial insights into how VLMs process and integrate visual information, bridging the gap between our understanding of language and vision models, and paving the way for more interpretable and controllable multimodal systems. Vision-Language Models (VLMs) take an image and text as input, and generate a text output. They have become powerful tools in processing and understanding text and images, enabling a wide range of applications from question answering to image captioning (Liu et al., 2023b; Li et al., 2023; Alayrac et al., 2022).
Permissive Information-Flow Analysis for Large Language Models
Siddiqui, Shoaib Ahmed, Gaonkar, Radhika, Köpf, Boris, Krueger, David, Paverd, Andrew, Salem, Ahmed, Tople, Shruti, Wutschitz, Lukas, Xia, Menglin, Zanella-Béguelin, Santiago
Large Language Models (LLMs) are rapidly becoming commodity components of larger software systems. This poses natural security and privacy problems: poisoned data retrieved from one component can change the model's behavior and compromise the entire system, including coercing the model to spread confidential data to untrusted components. One promising approach is to tackle this problem at the system level via dynamic information flow (aka taint) tracking. Unfortunately, the traditional approach of propagating the most restrictive input label to the output is too conservative for applications where LLMs operate on inputs retrieved from diverse sources. In this paper, we propose a novel, more permissive approach to propagate information flow labels through LLM queries. The key idea behind our approach is to propagate only the labels of the samples that were influential in generating the model output and to eliminate the labels of unnecessary input. We implement and investigate the effectiveness of two variations of this approach, based on (i) prompt-based retrieval augmentation, and (ii) a $k$-nearest-neighbors language model. We compare these with the baseline of an introspection-based influence estimator that directly asks the language model to predict the output label. The results obtained highlight the superiority of our prompt-based label propagator, which improves the label in more than 85% of the cases in an LLM agent setting. These findings underscore the practicality of permissive label propagation for retrieval augmentation.
The Perils of Optimizing Learned Reward Functions: Low Training Error Does Not Guarantee Low Regret
Fluri, Lukas, Lang, Leon, Abate, Alessandro, Forré, Patrick, Krueger, David, Skalse, Joar
In reinforcement learning, specifying reward functions that capture the intended task can be very challenging. Reward learning aims to address this issue by learning the reward function. However, a learned reward model may have a low error on the training distribution, and yet subsequently produce a policy with large regret. We say that such a reward model has an error-regret mismatch. The main source of an error-regret mismatch is the distributional shift that commonly occurs during policy optimization. In this paper, we mathematically show that a sufficiently low expected test error of the reward model guarantees low worst-case regret, but that for any fixed expected test error, there exist realistic data distributions that allow for error-regret mismatch to occur. We then show that similar problems persist even when using policy regularization techniques, commonly employed in methods such as RLHF. Our theoretical results highlight the importance of developing new ways to measure the quality of learned reward models.
A Generative Model of Symmetry Transformations
Allingham, James Urquhart, Mlodozeniec, Bruno Kacper, Padhy, Shreyas, Antorán, Javier, Krueger, David, Turner, Richard E., Nalisnick, Eric, Hernández-Lobato, José Miguel
Correctly capturing the symmetry transformations of data can lead to efficient models with strong generalization capabilities, though methods incorporating symmetries often require prior knowledge. While recent advancements have been made in learning those symmetries directly from the dataset, most of this work has focused on the discriminative setting. In this paper, we take inspiration from group theoretic ideas to construct a generative model that explicitly aims to capture the data's approximate symmetries. This results in a model that, given a prespecified broad set of possible symmetries, learns to what extent, if at all, those symmetries are actually present. Our model can be seen as a generative process for data augmentation. We provide a simple algorithm for learning our generative model and empirically demonstrate its ability to capture symmetries under affine and color transformations, in an interpretable way. Combining our symmetry model with standard generative models results in higher marginal test-log-likelihoods and improved data efficiency.
Stress-Testing Capability Elicitation With Password-Locked Models
Greenblatt, Ryan, Roger, Fabien, Krasheninnikov, Dmitrii, Krueger, David
To determine the safety of large language models (LLMs), AI developers must be able to assess their dangerous capabilities. But simple prompting strategies often fail to elicit an LLM's full capabilities. One way to elicit capabilities more robustly is to fine-tune the LLM to complete the task. In this paper, we investigate the conditions under which fine-tuning-based elicitation suffices to elicit capabilities. To do this, we introduce password-locked models, LLMs fine-tuned such that some of their capabilities are deliberately hidden. Specifically, these LLMs are trained to exhibit these capabilities only when a password is present in the prompt, and to imitate a much weaker LLM otherwise. Password-locked models enable a novel method of evaluating capabilities elicitation methods, by testing whether these password-locked capabilities can be elicited without using the password. We find that a few high-quality demonstrations are often sufficient to fully elicit password-locked capabilities. More surprisingly, fine-tuning can elicit other capabilities that have been locked using the same password, or even different passwords. Furthermore, when only evaluations, and not demonstrations, are available, approaches like reinforcement learning are still often able to elicit capabilities. Overall, our findings suggest that fine-tuning is an effective method of eliciting hidden capabilities of current models, but may be unreliable when high-quality demonstrations are not available, e.g. as may be the case when models' (hidden) capabilities exceed those of human demonstrators.