Not enough data to create a plot.
Try a different view from the menu above.
Krishna, Rahul
Unicorn: Reasoning about Configurable System Performance through the lens of Causality
Iqbal, Md Shahriar, Krishna, Rahul, Javidian, Mohammad Ali, Ray, Baishakhi, Jamshidi, Pooyan
Modern computer systems are highly configurable, with the variability space sometimes larger than the number of atoms in the universe. Understanding and reasoning about the performance behavior of highly configurable systems, due to a vast variability space, is challenging. State-of-the-art methods for performance modeling and analyses rely on predictive machine learning models, therefore, they become (i) unreliable in unseen environments (e.g., different hardware, workloads), and (ii) produce incorrect explanations. To this end, we propose a new method, called Unicorn, which (a) captures intricate interactions between configuration options across the software-hardware stack and (b) describes how such interactions impact performance variations via causal inference. We evaluated Unicorn on six highly configurable systems, including three on-device machine learning systems, a video encoder, a database management system, and a data analytics pipeline. The experimental results indicate that Unicorn outperforms state-of-the-art performance optimization and debugging methods. Furthermore, unlike the existing methods, the learned causal performance models reliably predict performance for new environments.
Partitioning Cloud-based Microservices (via Deep Learning)
Yedida, Rahul, Krishna, Rahul, Kalia, Anup, Menzies, Tim, Xiao, Jin, Vukovic, Maja
Cloud-based software has many advantages. When services are divided into many independent components, they are easier to update. Also, during peak demand, it is easier to scale cloud services (just hire more CPUs). Hence, many organizations are partitioning their monolithic enterprise applications into cloud-based microservices. Recently there has been much work using machine learning to simplify this partitioning task. Despite much research, no single partitioning method can be recommended as generally useful. More specifically, those prior solutions are "brittle''; i.e. if they work well for one kind of goal in one dataset, then they can be sub-optimal if applied to many datasets and multiple goals. In order to find a generally useful partitioning method, we propose DEEPLY. This new algorithm extends the CO-GCN deep learning partition generator with (a) a novel loss function and (b) some hyper-parameter optimization. As shown by our experiments, DEEPLY generally outperforms prior work (including CO-GCN, and others) across multiple datasets and goals. To the best of our knowledge, this is the first report in SE of such stable hyper-parameter optimization. To aid reuse of this work, DEEPLY is available on-line at https://bit.ly/2WhfFlB.