Not enough data to create a plot.
Try a different view from the menu above.
Kramer, Alan H.
Efficient Parallel Learning Algorithms for Neural Networks
Kramer, Alan H., Sangiovanni-Vincentelli, Alberto
Parallelizable optimization techniques are applied to the problem of learning in feedforward neural networks. In addition to having superior convergence properties, optimization techniques such as the Polak Ribiere method are also significantly more efficient than the Backpropagation algorithm. These results are based on experiments performed on small boolean learning problems and the noisy real-valued learning problem of handwritten character recognition. 1 INTRODUCTION The problem of learning in feedforward neural networks has received a great deal of attention recently because of the ability of these networks to represent seemingly complex mappings in an efficient parallel architecture. This learning problem can be characterized as an optimization problem, but it is unique in several respects. Function evaluation is very expensive. However, because the underlying network is parallel in nature, this evaluation is easily parallelizable.
Efficient Parallel Learning Algorithms for Neural Networks
Kramer, Alan H., Sangiovanni-Vincentelli, Alberto
Parallelizable optimization techniques are applied to the problem of learning in feedforward neural networks. In addition to having superior convergenceproperties, optimization techniques such as the Polak Ribiere method are also significantly more efficient than the Backpropagation algorithm.These results are based on experiments performed on small boolean learning problems and the noisy real-valued learning problem of handwritten character recognition. 1 INTRODUCTION The problem of learning in feedforward neural networks has received a great deal of attention recently because of the ability of these networks to represent seemingly complex mappings in an efficient parallel architecture. This learning problem can be characterized as an optimization problem, but it is unique in several respects. Function evaluation is very expensive. However, because the underlying network is parallel in nature, this evaluation is easily parallelizable. In this paper, we describe the network learning problem in a numerical framework and investigate parallel algorithms for its solution. Specifically, we compare the performance of several parallelizable optimization techniques to the standard Back-propagation algorithm. Experimental results show the clear superiority of the numerical techniques. 2 NEURAL NETWORKS A neural network is characterized by its architecture, its node functions, and its interconnection weights. In a learning problem, the first two of these are fixed, so that the weight values are the only free parameters in the system.