Not enough data to create a plot.
Try a different view from the menu above.
Kothari, Anai N.
A Novel Algorithm for Personalized Federated Learning: Knowledge Distillation with Weighted Combination Loss
Hu, Hengrui, Kothari, Anai N., Banerjee, Anjishnu
Federated learning (FL) offers a privacy-preserving framework for distributed machine learning, enabling collaborative model training across diverse clients without centralizing sensitive data. However, statistical heterogeneity, characterized by non-independent and identically distributed (non-IID) client data, poses significant challenges, leading to model drift and poor generalization. This paper proposes a novel algorithm, pFedKD-WCL (Personalized Federated Knowledge Distillation with Weighted Combination Loss), which integrates knowledge distillation with bi-level optimization to address non-IID challenges. pFedKD-WCL leverages the current global model as a teacher to guide local models, optimizing both global convergence and local personalization efficiently. We evaluate pFedKD-WCL on the MNIST dataset and a synthetic dataset with non-IID partitioning, using multinomial logistic regression and multilayer perceptron models. Experimental results demonstrate that pFedKD-WCL outperforms state-of-the-art algorithms, including FedAvg, FedProx, Per-FedAvg, and pFedMe, in terms of accuracy and convergence speed.
PRISM: Patient Records Interpretation for Semantic Clinical Trial Matching using Large Language Models
Gupta, Shashi Kant, Basu, Aditya, Nievas, Mauro, Thomas, Jerrin, Wolfrath, Nathan, Ramamurthi, Adhitya, Taylor, Bradley, Kothari, Anai N., Schwind, Regina, Miller, Therica M., Nadaf-Rahrov, Sorena, Wang, Yanshan, Singh, Hrituraj
Clinical trial matching is the task of identifying trials for which patients may be potentially eligible. Typically, this task is labor-intensive and requires detailed verification of patient electronic health records (EHRs) against the stringent inclusion and exclusion criteria of clinical trials. This process is manual, time-intensive, and challenging to scale up, resulting in many patients missing out on potential therapeutic options. Recent advancements in Large Language Models (LLMs) have made automating patient-trial matching possible, as shown in multiple concurrent research studies. However, the current approaches are confined to constrained, often synthetic datasets that do not adequately mirror the complexities encountered in real-world medical data. In this study, we present the first, end-to-end large-scale empirical evaluation of clinical trial matching using real-world EHRs. Our study showcases the capability of LLMs to accurately match patients with appropriate clinical trials. We perform experiments with proprietary LLMs, including GPT-4 and GPT-3.5, as well as our custom fine-tuned model called OncoLLM and show that OncoLLM, despite its significantly smaller size, not only outperforms GPT-3.5 but also matches the performance of qualified medical doctors. All experiments were carried out on real-world EHRs that include clinical notes and available clinical trials from a single cancer center in the United States.